IFN-γ selectively exerts pro-apoptotic effects on tumor-initiating label-retaining colon cancer cells

Chao Ni a,1, Ping Wu a,1, Xiaotao Zhu b, Jun Ye a, Zhigang Zhang a, Zhigang Chen a, Tao Zhang a, Ke Wang a, Dang Wu a, Fuming Qiu c, Jian Huang a,c,*

a Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
b Jinhua Central Hospital, Jinhua 321000, China
c Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

ARTICLE INFO

Article history:
Received 25 January 2013
Received in revised form 1 April 2013
Accepted 26 April 2013

Keywords:
Cancer stem cells
Quiescent cancer cells
Lgr5
Interferon gamma
Apoptosis

1. Introduction

Cancer stem cells (CSCs) represent a relatively rare population of cells that proliferate slowly, are highly resistant to drugs, and possess tumor-initiating capacities. Currently, the most common method of defining CSCs is based on various cell surface markers, which have been demonstrated to enrich stem-like cancer cells. However, there is still some controversy surrounding these surface markers. CD133+ and CD44+/CD24+ have been used as typical exemplified CSC markers in colon cancer [1,2], but several researchers have found that both CD133+ and CD133− colon cancer cells display similar capacities in colon sphere formation and serial xenograft formation; CD133− tumor cells show more aggressive behavior during metastasis [3]. Furthermore, the great variation of CD44 and CD24 expression in patients raises questions about their usefulness as CSC markers [4]. Because the majority of markers currently used to identify CSCs are non-specific and their functions have not been clarified [5–7], we focused our study on distinct subpopulations of cancer cells with specific characteristics, such as quiescence or slow proliferation that are arrested in the G0 phase of the cell cycle. Although PY-Hoechst 33342 double staining can directly isolate cells in the G0 phase, the cytotoxicity of dyes limits live sorting [8]. Because the label retention assay is now considered an effective approach to isolate quiescent cancer cells in a solid tumor [9], in this study, we used PKH26/67 staining of primary colon cancer cells. We sorted the cells by fluorescence intensity into PKH hi and PKH low subsets, but only the PKH hi subset of cells is referred to as LRCCs.

Mirroring normal adult stem cells, quiescence and slow proliferation are important features of CSCs, and recent reports have further confirmed the critical function of quiescent cancer cells in tumor initiation [10]. However, increasing evidence has indicated that there is another subpopulation of intestinal stem cells or colon CSCs that exhibit rapid cycling properties, which are marked with Lgr5 positive expression [11,12]. In this study, first, we demonstrated that PKH hi cells strongly exhibit stem-like properties, including tumor initiating capacity, colony formation, and chemoresistance, as well as the expression of CSC markers and stemness-related genes. Next, we found that LRCCs express Lgr5 at low levels but that its expression is gradually increased during LRCC proliferation, which strongly im-
plies that Lgr5+ cells could be derived from LRCCs. However, a spe-
cific approach to eradicate LRCCs is still unknown.

CSCs escape immune surveillance through the low expression of
MHC molecules, resulting in the inhibition of anti-tumor immune
cell activation and the inhibition of regulatory T (Treg) cell induc-
tion [13,14]. Meanwhile, specific anti-cancer cytokines can poten-
tially eliminate CSC-like cells. Type I interferons, IFN-α and IFN-β,
have been reported to target CSC-like cells in both ovarian cancer
and glioblastoma [15,16], which implies that these cytokines
may be useful for restoring anti-cancer functions.

IFN-γ is the only member of the Type III FN family and has long
been clinically used for anti-cancer treatment [17–22]. Its anti-cancer
functions include tumor surveillance by the immune system, anti-
angiogenic functions, cell cycle restriction and pro-apoptotic func-
tions [23]. It has been shown that cell cycle suppression could greatly
potentiate the pro-apoptotic function of IFN-γ [24–26], which piqued our interest and prompted us to study its effect
on quiescent subset-PKH48 cells. Here, we first report that the ques-
tient cancer cells with stem cell-like properties are especially sensitive
to the apoptotic effect of IFN-γ due to their overexpression of IFN-γ
receptors. Furthermore, we report that IFN-γ synergistically com-
bined with Oxaliplatin (Oxa), a first-line colon cancer chemotherapy
cdrug, can eradicate both LRCCs and non-LRCCs, which significantly
inhibits tumor growth and reduces the risk of serial tumor formation.

To the best of our knowledge, we report for the first time that
LRCCs, as a distinct subpopulation of CSCs, can be selectively elimi-
nated by IFN-γ treatment, which may provide a novel therapeutic
strategy for colon cancer treatment.

2. Materials and methods

2.1. Primary colon cancer cell preparation and cell lines

The P1, P2 and P3 cells were primary cancer cells isolated from human colon
adenocarcinoma specimens obtained during surgical procedures, which was
approved by the Research Ethics Board at Zhejiang University. Informed consent
was obtained from each patient. The preparation of primary tumor cells P2 and
P3 was performed as we have described previously with some modifications [22].
Briefly, tumor blocks were washed in phosphate-buffered saline and minced com-
pletely with sterile scalpels blades, followed by incubation with serum-free (SF)
DMEM F12 (Invitrogen, Grand Island, NY) medium supplemented with 1 mg/ml
Collagenase Type IV and 1 mg/ml hyaluronidase (Worthington, Lakewood, NJ) for
1.5 h at 37 °C to obtain a single cell suspension. Enzymes and tissue debris were
removed from the cell suspension with density gradient centrifugation on ficoll
(1.077 g/ml) at 400 g for 15 min. The cell pellet was resuspended in DMEM F12
medium containing 10% FBS (Invitrogen, Carlsbad, CA) with a density of
10 cells/ml. Then, a 100 μl single cell suspension was seeded into each well of a
96-well plate, and the wells containing only a single cell were marked. In the fol-
lowing days, these marked wells were checked with a phase-contrast microscope
to exclude wells with fibroblast growth. The tumor cell colonies were transferred
to six-well plates when the cells reached confluency; then, the cells were divided,
with one portion used for subsequent experiments and one portion frozen.

P1 cancer cells were established earlier in our lab from a liver metastatic lesion
from a patient diagnosed with a colon adenocarcinoma [28]. P1 cancer cells were
cultured in RPMI-1640 (Invitrogen, Grand Island, NY) medium containing 10%
FBS. Colon cancer cell line HT29 was maintained in McCoy's 5A (Invitrogen, Grand
Island, NY) medium containing 10% FBS. The HT29 and HCT116 cell lines were
obtained from the American Type Culture Collection.

2.2. Cell staining and isolation

The cells were stained with PKH26/67, which irreversibly binds to the lipid bi-
layer of cell membranes; moreover, the expression of PKH26/67 is divided equally
among the daughter cells subsequent to each cell cycle. Cancer cells were then
sorted on the basis of their different fluorescent intensities, which were then clas-
sified as the PKH48, PKH57 and PKH77 subsets (gated at >105 fluorescence units,
10–100 fluorescence units and <105 fluorescence units, respectively) both in vitro
and in vivo (Supplementary data: materials and methods).

2.3. Sphere formation and FACS procedures

Cells were suspended in Diluents C (~1 × 106 cells/ml) and then labeled with
PKH26/PKH67 (2 × 105 cells, 5 min). The staining efficiency was greater than 99%.
A total of 1000 cells/well were cultured in SF-DMEM, containing F-12 (Invitrogen,
Grand Island, NY) medium supplemented with 10 ng/ml epidermal growth factor,
10 ng/ml basic fibroblast growth factor, N2 (Invitrogen, Grand Island, NY) and
4 μg/ml heparin (Sigma-Aldrich, St. Louis, MO), on ultralow attachment six-well
plates (Corning Life Sciences, Acton, MA). The spheroids were cultured for 2 weeks.
The ratio of spheroid formation was calculated according to the primary seeded cell
number.

PKH48, PKH57 and PKH77 cells were obtained both in vitro and in vivo. Single
cells were selected from the spheroids with Accutase (Invitrogen, Grand Island,
NY, 37 °C, 5 min, and filtered through a 40 μm strainer) and dissociated in vitro.
While in vivo, tumor cells (2 × 106) were stained with PKH26 and suspended in
100 μl of medium composed of 1:1 DMEM F-12 and Matrigel (BD phar
ingen, San Diego, CA, USA). Cells were injected s.c into 4- to 5-week-old male nude mice.
After 14 days, single cell suspensions were obtained from xenograft tumors using
the same method utilized for primary tumor cell suspensions. Cells either in vitro or in vivo
were subjected to FACS analysis with a BD Aria II flow cytometer (BD Biosciences,
San Jose, CA) to yield PKH48, PKH57 and PKH77 cells.

2.4. Soft agar colony formation assay

A soft agar colony formation assay was performed to compare the colony for-
mation ability of PKH48, PKH57 and PKH77 cells. The assays were previously de-
scribed [28].

2.5. Flow cytometry analysis

To investigate the cell cycle changes after IFN-γ (human recombinant IFN-γ,
rhIFN-γ, R&D systems, USA) treatment, cells were harvested and fixed by 95% eth-
anol (4 °C, overnight) and then incubated with RNase A (50 μg/ml, 30 min; Roche
Applied Science, Indianapolis, IN) and stained with PI (50 μg/ml, 30 min). The intra-
cellular PI fluorescence intensity was measured by flow cytometry (FCM), and sub-
G0/G1 phase was considered to be apoptotic. To verify the quiescent trait of label-
retaining cells (LRCCs), single cell suspensions from spheroids were incubated with
cell culture medium containing 10 μg/ml Hoechst 33342 (37 °C, 45 min), and
5 μg/ml PI was added for a further 15 min incubation using the same conditions.
The cells with low PI staining were identified at G0 phase.

To detect the CSC markers and IFN-γR distribution, xenografts were dissociated
into single cells and washed twice with PBS. The CD133 (APC-conjugated, Miltenyi
biotec, Bergisch Gladbach, Germany), CD24 (APC-conjugated, Miltenyi biotec,
Bergisch Gladbach, Germany), CD44 (FITC-conjugated, Miltenyi biotec, Bergisch
Gladbach, Germany), ki67 (Alexafluor 647-conjugated, Biologend, San Diego, CA) and
IFNGR-1 (PE-conjugated, Biologend, San Diego, CA) antibodies were used to
label different cell populations. Immunofluorescence labeling was as-
sessed with the ALDEFLUOR kit (Stemcell Technologies, Vancouver, Canada).
All cells were analyzed by a BD Aria II flow cytometer.

2.6. Cell proliferation assays and cell cycle analysis

The cells were plated at a density of 1.0 × 104 cells per well in a 24-well plate.
After seeding for 12 h, human recombinant IFN-γ (rhIFN-γ), rhIFN-γ, R&D systems, USA)
treatment, cells were harvested and fixed by 95% ethanol (4 °C, overnight) and then incubated with RNase A (50 μg/ml, 30 min; Roche
Applied Science, Indianapolis, IN) and stained with PI staining for cell cycle phase distribution. To differentiate between G0 and G1 cell cycle phases, we performed Hoechst 33342
(Sigma) – Pyronin Y (PY; Sigma) staining.

2.7. Determination of cell viability and apoptosis

To test the sensitivity of PKH48, PKH57 and PKH77 cells to Oxa, Oxa (10 μg/ml)
was added after the cells were cultured in serum-free (SF) medium for 14 days. The percentage of viable cells was analyzed by FCM with 7-AAD staining (5 min, room
temperature; BD Pharmingen).

To test the pro-apoptotic effects of IFN-γ and/or Oxa treatment on PKH48, PKH57
and PKH77 cells in vitro, each subpopulation was sequentially treated with rhIFN-γ
(1000 pg/ml) and/or Oxa (10 μg/ml) for 6 days. We also investigated pro-apoptotic
effects in vivo. PKH26-stained cells (2 × 106) were injected s.c into nude mice.
Xenografts were palpable after 7–8 days, and then, rhIFN-γ (2 × 106 U/mouse/day) was injected i.p for 1 week, and saline was injected as a control. FCM analysis of
Annexin V (BD Pharmingen)-7-AAD double staining was used to determine the per-
centage of apoptotic and viable cells. The pro-apoptotic effect of IFN-γ on PKH48,
PKH57 and PKH77 cells was confirmed with the terminal deoxynucleotidyl trans-
ferase DUTP nick end labeling (TUNEL) technique with an in situ Cell Death Detection Kit FITC (Roche, Germany). All procedures strictly followed the manufacturer’s instructions.

2.8. Determination of the half inhibition concentration (IC_{50})

To determine the half growth inhibition concentrations (IC_{50}) of IFN-γ on PKH^{hi}, PKH^{low} and PKH^{neg} cells, different subsets were sorted and seeded into 96-well plates, and the viable cells were evaluated with the CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay (MTS, Promega). All experimental procedures followed manufacturer’s instruction. IC_{50} values were determined by plotting a linear regression curve.

2.9. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

Because of the extremely low amount of total RNA extraction, especially from the PKH^{hi} cells, we used the Taqman® PreAmp Cells to CT™ Kit (Life Technologies Co.) to overcome this limitation. The kit amplifies target genes utilizing a 10–14 PCR cycle and specific primers. Taqman assays of OCT4, Nanog, Nestin, Bmi1 and IFNRα were purchased from Applied Biosystems (Life Technologies Co.). All procedures strictly followed the manufacturer’s instructions.

2.10. Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 20 min, blocked in 5% normal goat serum and incubated with a primary antibody against Lgr5 or IRF-1 (4 °C, overnight), followed by DyLight488 conjugated goat anti-rabbit antibody incubation (37 °C, 1 h). After immunolabeling, cells were washed with PBS, stained with DAPI (Sigma, St. Louis, MO, USA), and then viewed under laser confocal microscope (LCM, Leica SP-5, Germany).

2.11. Western blot analysis

Western blot analysis was performed according to the previously reported protocol with some modifications [29]. Antibodies against JAK1, phospho-JAK1 (Tyr1022/1023), JAK2, phospho-JAK2 (Tyr1007), STAT1, phospho-STAT1 (Tyr701) and IRF-1 were obtained from Cell Signaling Biotechnology (Danvers, MA, USA).

2.12. In vivo tumorigenic assay and chemotherapeutic study

All mice were bred in defined conditions at the Laboratory Animal Research Center of Zhejiang Chinese Medicine University with the permission of the local animal care and ethical committee. To compare the tumor initiating capacity of the PKH^{hi}, PKH^{neg} and PKH^{low} cells, different amounts (1000, 5000, 25,000 cells) of each subset were obtained from tumor xenografts and then injected s.c. into nude mice to compare their tumor forming ability.

Two weeks after cell injection, all nude mice were randomly assigned to four groups (n = 5) with different treatments, including vehicle (saline, i.p.), Oxa (2 mg/kg/week, i.v.), rhIFN-γ (2 × 10^5 μg/mouse/2 days, i.p.), or Oxa (2 mg/kg/week, i.v.) combined with rhIFN-γ (2 × 10^5 μg/mouse/2 days, i.p.). All groups received treatment for 4 weeks. Xenografts were then harvested and enzymatically disassociated to form single cells, and 25,000 or 5000 cells from each group (n = 5) were injected s.c. into nude mice for serial tumor formation assays. The observation time frame for tumor growth was up to 8 weeks. The tumor volumes were measured as length × width × width/2.

2.13. Statistical analysis

All data are presented as the means ± SD. Statistical analysis was performed with the SPSS 10.0 software package. A two-sided value of P < 0.05 was considered statistically significant.

3. Results

3.1. Label-retaining cancer cells, especially PKH^{hi} cells, exhibit stronger CSC-like capacities

To isolate cells with different fluorescent intensities, cells were stained with PKH26 in advance and then cultured in SF medium to yield spheroids or injected s.c. into nude mice for xenograft formation. Fourteen days later, either in vitro or in vivo, the cells exhibited a continuous gradient of fluorescence intensity: only a few cells retained a strong fluorescence intensity (PKH^{hi}, 0.87 ± 0.30%), whereas some cells retained less of the fluorescent label (PKH^{neg}, 39.2 ± 11.58%), and the remaining cells completely quenched the label (PKH^{low}, 58.2 ± 8.32%; Fig. 1A and B), which was attributed to self-renewal and subsequent cell division. Based on the hierarchy model of tumor formation, we postulate that these three populations are heterogeneous in terms of CSC-like properties.

We then determined whether the PKH^{hi} cells were in a quiescent state. For this purpose, Hoechst 33342 – Pyronin Y staining was performed to compare the G0 phase distributions in PKH^{hi}, PKH^{low} and PKH^{neg} cells. Our results showed that the majority of PKH^{hi} cells were in the G0 phase (78.07 ± 1.98%), whereas only a minority of the population of PKH^{low} and PKH^{neg} cells were in G0 phase (1.14 ± 0.48%, 1.87 ± 0.34%, respectively) (Fig. 1C, Supplementary Fig. S1A), which indicated that the PKH^{hi} population represented actual quiescent cells.

Because CSCs exhibit dominant self-renewal, chemoresistance and tumor-initiating capacities [27], we contrasted these properties among the three populations. In colony formation assays, PKH^{hi} cells (35.6 ± 6.39 colonies/100 cells) showed a much greater ability than both PKH^{low} (15.8 ± 4.89 colonies/100 cells) and PKH^{neg} cells (3.2 ± 1.3 colonies/100 cells) to form colonies (Fig. 1D, Supplementary Fig. S1B). In a tumorigenicity assay, the tumor-initiating capacity of PKH^{hi} cells was far stronger than both the PKH^{low} and PKH^{neg} cells; only 1000 PKH^{hi} cells could form xenografts in nude mice, while the tumor-initiating thresholds of the PKH^{low} and PKH^{neg} cells were approximately 5000 and 25,000 cells, respectively (Fig. 1E, Supplementary Table S2). Next, we used Oxaliplatin (Oxa), a first-line chemotherapeutic drug for colon cancer treatment to investigate the chemoresistance ability of the three subpopulations. Our previous study showed that Oxa could enrich CSC-like cells [28]. In this study, we demonstrated that Oxa is effective when treating primary colon cancer cells in vitro (Supplementary Fig. S1C). The treatment could enrich the PKH^{hi} population by 33.75 ± 7.14-fold compared with the control group (Fig. 1F), while the percentage of viable cells in PKH^{low} and PKH^{neg} decreased significantly (data not shown). These results suggest that PKH^{hi} cells are especially resistant to conventional chemotherapy.

3.2. CSC markers and stemness-related genes are preferentially overexpressed in PKH^{hi} cells

Several cell surface markers, such as CD133+, CD44+/CD24+ and ALDH1+, have been used to identify colon CSCs in recent years [29–32]. Therefore, we investigated these markers in the three populations of P2 cells. It was remarkable that all markers were preferentially expressed in PKH^{hi} cells (CD133+, 57.5 ± 13.3%; CD44+/ CD24+, 71.6 ± 11.8%; and ALDH1+, 16.3 ± 2.1%), but this expression greatly decreased when the label intensity decreased (PKH^{low} CD133+, 16.4 ± 3.3%; CD44+/CD24+, 27.8 ± 7.2%; ALDH1+, 3.7 ± 1.4%; PKH^{neg} CD133+, 1.5 ± 1.4%; CD44+/CD24+, and 4.7 ± 1.1%; ALDH1+, 0%; Fig. 2A). The other two primary colon cancer cell lines showed that PKH^{hi} cells possessed the greatest level of CSC markers, similar to that seen with P2 cells (Supplementary Fig. S1D).

Furthermore, we determined the expression level of four stemness-related genes, OCT4, Nanog, Bmi1 and Nestin [9], in the three subsets of cells. Although these genes could be detected in all three subsets of cells, the expression levels increased more dramatically in the PKH^{hi} population (Fig. 2B) compared with the other two cell subsets. However, the PKH^{neg} population still significantly showed a higher expression level compared with the PKH^{low} population (Fig. 2B). This trend strongly suggests that there is a hierarchical relationship among the three cell groups and that the PKH^{hi} population can thus be considered a distinct CSC subset, independent of the reported markers that define the CSC subpopulation.
3.3. Lgr5+ and PKHhi cells are two distinct populations and Lgr5+ cells could be derived from PKHhi cells

Although the above evidence indicates the extreme stemness of LRCCs in colon cancer cells, several studies in the literature report that there is another subpopulation of CSCs that exists, which is not in a quiescent state but a rapid cycling state [11,12,33]. Consequently, we first investigated the relationship between PKHhi cells and Lgr5+ cells. P2 cells were labeled with PKH26 and cultured in SF medium for 14 days, and FCM analysis showed that approximately 10% of cells were Lgr5 positive; nearly all P2 cells were Ki67 positive but were not included in the PKHhi subset (Fig. 2D and E). Next, we sorted the PKHhi cells and seeded the cells on chamber slides for series confocal observation. Interestingly, we observed that PKHhi cells expressed very weak Lgr5 level initially, but during cell division and differentiation, the Lgr5 level gradually increased and migrated from the cytoplasm to the cell membrane (Fig. 2F). This is the first study to report that a relationship exists between LRCCs and Lgr5+ cells, which are known to be two CSC subpopulations with different cell cycle properties. This result indicates that Lgr5+ cells could be derived from LRCCs. Therefore, the question of how to eradicate quiescent cancer stem cells could be an important issue for future research.

3.4. IFN-γ treatment selectively exerts pro-apoptosis effects on PKHhi cells

Accumulating evidence suggests that dendritic cells can eradicate CSC-like cells by enhancing IFN-γ secretion [34,35], implying that CSCs are not resistant to IFN-γ. We first determined whether IFN-γ functions to prevent sphere formation in SF medium. Interestingly, we observed that spheroid formation was greatly inhibited with only 250 μg/ml rhIFN-γ, whereas a higher dose (1000 μg/ml) resulted in complete loss of the spheroids (Fig. 3A). These results strongly indicate that IFN-γ can reduce the self-renewal property of CSC-like cells.

Because PKHhi, PKHlow and PKHneg cells have various CSC-like capacities, we studied the apoptotic effects of IFN-γ treatment on all three cell populations. Using P2 cells, the three populations were isolated from spheroids and treated with rhIFN-γ (1000 μg/ml). The results showed strikingly different responses of the PKHhi, PKHlow and PKHneg cells to IFN-γ treatment. We set the percentage of viable cells prior to treatment as a control; IFN-γ treatment exerted a significant pro-apoptotic effect on the PKHhi subsets (3 days of treatment, 38.57 ± 4.12%; 6 days of treatment, 13.8 ± 2.95% treatment), whereas PKHlow subsets revealed a more muted response (3 days of treatment, 77.2 ± 6.90%; 6 days of treatment, 47.2 ± 4.03%), and PKHneg cells seemed to be the most resistant.
to the IFN-γ treatment (3 days of treatment, 87.13 ± 5.15%; 6 days of treatment, 72.0 ± 4.41%, Fig. 3B). The TUNEL assay also confirmed the selective pro-apoptotic effect of the IFN-γ treatment on the PKHhi subset (Supplementary Fig. S2A). In addition, we also demonstrated that the specific pro-apoptotic effect of the IFN-γ treatment on PKHhi cells was dose-dependent (Fig. 3E), and the half
inhibitory concentration (IC50) of IFN-γ-treated PKHhi cells was much lower than that in IFN-γ-treated PKHlow and PKHneg cells (Fig. S2B). Similar results were confirmed in P1, P3, HT29 and HCT116 cells (Supplementary Fig. S3A).

In a subsequent experiment, we assessed the effect of IFN-γ treatment on the total population of colon cancer cells, and as expected, IFN-γ treatment suppressed cellular proliferation in a dose-dependent manner (Supplementary Fig. S4A). In addition, PI staining revealed both a moderate cell cycle arrest and a pro-apoptotic function of IFN-γ, but only the pro-apoptotic function of IFN-γ was enhanced with increasing concentrations (Supplementary Fig. S4B). Considering the results above, we speculated that IFN-γ mainly exerts pro-apoptotic effects on the colon cancer cells.

Next, we verified the in vivo effect of IFN-γ treatment on PKHhi cells. After 7 days of treatment, the percentage of viable cells in the PKHhi cell subset significantly decreased (51.17 ± 11.72%) in contrast to the control group, but the viability of the PKHlow and PKHneg cells was considerably unaffected (PKHlow 77.5 ± 7.72%; PKHneg 89.07 ± 5.44%, Fig. 5A). These results clearly suggest that IFN-γ treatment selectively induces apoptosis of the PKHhi population and that its effect greatly decreases with label quenching.

3.5. PKHhi cells are specifically sensitive to IFN-γ treatment due to a higher level of IFN-γ receptors

Given the different responses to IFN-γ treatment among the PKHhi, PKHlow and PKHneg cells, we sought to determine the detailed mechanism behind these responses. A previous study demonstrated that a high level of functional IFN-γR could rapidly activate JAK–Stat1–IRF1 signaling to induce apoptosis, whereas low levels of IFN-γR were not sufficient [36]. Thus, we evaluated IFN-γ receptor expression in the PKHhi, PKHlow and PKHneg cells. The FCM analyses highlighted the different IFN-γRα and IFN-γRβ expression in the three cell populations; expression of both the two IFN-γR subunits was considerably higher in the PKHhi subset but lower in the PKHlow and PKHneg subsets (Fig. 4A, Supplementary Fig. S3A). Because the expression of IRF-1 was closely related to the IFN-γR levels after IFN-γ treatment [36], we studied the expression of IRF-1 after rh-
Higher levels of IFN-γ receptors on PKHhi cells determine their sensitivity to IFN-γ treatment. (A) Expression of IFN-γRα and IFN-γRβ proteins in PKHhi, PKHlow and PKHneg cells. (B) Immunostaining of IRF-1 (green) in PKHhi, PKHlow and PKHneg cells after rhIFN-γ (1000 μl/ml) treatment for 6 days. Nuclei were counterstained with DAPI. (C) Cells were pre-cultured with or without the neutralizing anti-IFN-γRα antibody (10 μg/ml) then treated with rhIFN-γ (1000 μl/ml). IRF-1 expression was detected by western blot. An isotype-indicated control was used along with the antibody to IFN-γRα. (D-F) Cells were pre-cultured with or without the neutralizing anti-IFN-γR antibody then treated with rhIFN-γ (1000 μl/ml). The cell viability of PKHhi (E), PKHlow (F) and PKHneg (G) cells was measured by FCM on day 3 and day 6. The data are shown as one typical result from 3 independent experiments with similar results or as the mean ± SD of 3 independent experiments. *p < .05; **p < .01.
FN-γ (1000 µg/ml) treatment. We found that the PKHhi cells had the highest expression of IRF-1, whereas the PKHlow and PKHneg cells showed a slight upregulation (Fig. 4B).

To verify that the differential expression of the IFN-γR was the dominating factor that gave rise to the various responses after IFN-γ treatment, we blocked IFN-γR and observed the changes. Because the two IFN-γ receptor subunits are indispensable—the IFN-γR\textsubscript{α} chain is important for binding and the IFN-γR\textsubscript{β} chain is important for signal transduction—in our study, we blocked IFN-γR\textsubscript{α} using its neutralizing antibody. Cells were pre-incubated with anti-human IFN-γR\textsubscript{α} antibody (10 µg/ml) for 30 min, and it was shown that the upregulation of IRF-1 induced by IFN-γ was greatly inhibited (Fig. 4C). Additionally, the specific apoptotic function of IFN-γ treatment on the PKHhi cells was neutralized (Fig. 4D), which further supports our hypothesis. All the above evidence strongly suggests that increased IFN-γR expression in the PKHhi subset plays a key role in its sensitivity to the apoptotic function induced by IFN-γ.

Furthermore, we analyzed the IFN-γR expression level in Lgr5+ and Lgr5− cells. The results showed a higher level of both IFN-γR\textsubscript{α} and IFN-γR\textsubscript{β} expression in Lgr5+ cells (Supplementary Fig. S3B); however, no differences in IFN-γR expression as a result of IFN-γ treatment were observed between these two populations (Fig. 3F and G).

3.6. IFN-γ functions synergistically with Oxaliplatin to eliminate both LRCCs and non-LRCCs

Based on the above results, we performed a sequential treatment using Oxa and/or IFN-γ. Cells from the different populations were first treated with Oxa (10 µg/ml) and then co-incubated for another 6 days with rhIFN-γ (1000 µg/ml). FCM analyses demonstrated that Oxa-resistant PKHhi cells underwent apoptosis with IFN-γ treatment (Fig. 3C). When the treatment order was reversed, the majority of the PKHhi cells were dead after IFN-γ treatment, but the majority of the PKHhi cells survived after Oxa treatment. However, most of the PKHlow and PKHneg cells were viable during the IFN-γ incubation but were efficiently killed by Oxa treatment (Fig. 3B).

To confirm this effect of combined therapy in vivo, we used a serial transplantation model. Mice carrying xenografts were randomly divided into four groups that received different treatments for 1 month. Compared with the monotherapy group, combined
administration of IFN-γ and Oxa showed a greater effect on tumor growth inhibition. However, in contrast to the control group, the IFN-γ monotherapy group showed a slight tumor repressive function (Fig. 5B). Because of animal safety concerns, we ensured that all control animals and IFN-γ monotherapy animals were viable during the treatments and exhibited similar body weights (Fig. 5C). However, two animals died, and the remaining mice lost a considerable amount of weight in both the combination therapy and Oxa monotherapy groups (Fig. 5C), suggesting that the IFN-γ did not augment the toxicity of Oxa/lipidin.

Because of the synergistic anti-cancer effects of IFN-γ and Oxa, which could eliminate LRCCs and non-LRCCs together in vitro, we compared the tumor-initiating capacity of the cells from the xenograft tumor after the different treatments described above. Tumors from each therapy group were dissociated into single cells and injected into the flanks of mice with different indicated cell numbers. Consequently, in the second xenograft formation assay, cancer cells from the Oxa-treated group formed tumors in all mice at 2.5 × 10^3 cells/injection and 5 × 10^3 cells/injection, and these tumors possessed the largest tumor volumes, which could be attributed to the enrichment of the CSCs by chemotherapy. However, IFN-γ monotherapy resulted in a moderate decrease in tumor formation capacity, which was observed in 5/5 and 3/5 nude mice using the same cell numbers. Meanwhile, compared with the other groups, the combination therapy significantly reduced the tumor formation ratio and tumor volume (Fig. 5D and E, Table 1). Altogether, these data suggest that IFN-γ treatment combined with chemotherapy could profoundly enhance anti-tumor effects and decrease the capacity for serial tumor formation.

4. Discussion

LRCCs have been previously defined according to the label staining assay and compose 0.4–3% of all cells in solid tumors; however, the amount of time spent to isolate quiescent cancer cells varied in different tissue types (6 days–6 weeks) [9,37–44], which suggests that the cell division time differs among various cancer cells but that the percentage of LRCCs remains relatively stable. In our study, we found that the fluorescence-quenching rate, which represented the cellular division time, was similar both in vivo and in vitro culture conditions within a 2-week timeframe. However, the LRCCs rapidly lost fluorescence in vivo after 16–18 days, but the fluorescence remained relatively stable in vitro for 4 weeks. A possible reason for this difference is that the overgrowth of the xenograft caused a nutrition deficiency and resulted in tumor necrosis in vivo, which caused the dormant CSCs to proliferate and replenish the lost cells, resulting in a rapid loss of fluorescence. Based on this phenomenon and our hypothesis, LRCCs were isolated 2 weeks after staining for subsequent study.

Although quiescent cells in the normal intestinal tract have attracted much attention recently [45–48], the evidence of LRCCs existence in colon cancer is very limited. Xin et al. [37] showed that LRCCs have increased CSC-like features compared with non-LRCCs in gastrointestinal cancers. We obtained similar results by demonstrating that the majority of PKH^hi^ cells were quiescent. We also differentiated cells into three populations, and nearly all CSC-like properties were closely associated with fluorescence intensity, which was especially high in the PKH^hi^ subset. It has also been found that in ovarian cancer the expression of both stemness-related genes and CSC markers was enriched in the PKH^hi^ subset but lost in the PKH^neg^ subset [9]. To further elucidate the relationship between CSC markers (CD133+, CD44+/CD24+, ALDH1+) and label intensity, we noted that none of these CSC markers were definitively useful in identifying the PKH^hi^ population. In other words, the CSC markers and LRCCs overlapped or enriched each other. Additionally, expression of these markers could be detected in the PKH^low^ and PKH^neg^ populations. Based on the theory of stochastic equilibrium between CSC-like and non-CSC-like cells [49], we speculated that the cells with low label retention may persist but that they may have a much lower tumor-initiating capacity. However, increasing evidence has shown that a subpopulation of rapid cycling cells in the intestinal tract also exhibit stem cell traits, both in normal tissues and cancer lesions. Yan et al. [11] found that Bmi1 and Lgr5 could independently identify long-lived multipotent intestinal stem cells by lineage tracing in mice; the former represents quiescent subpopulations, and the latter represents mitotically active subpopulations. Although both quiescent and mitotically active subpopulations displayed the ability to rebuild the intestinal structure, after the epithelium was injured by radiation, only the quiescent ISC could quickly proliferate to facilitate epithelium regeneration. Additionally, the quiescent subpopulations give rise to the Lgr5+ cells. Recently, Kobayashi et al. [12] reported that Lgr5+ colon cancer stem cells could interconvert with the non-cycling Lgr5− state after chemotherapeutic treatment, but the original relationship between quiescent and rapid cycling CSCs was not specified. Here, we first report that LRCCs and Lgr5+ cells are two distinct subpopulations in colon cancer cells and that LRCCs could give rise to Lgr5+ cells during proliferation. Altogether, these data indicate that LRCCs represent a distinct cell population and that they could be considered putative, novel stem-like cancer cells. Moreover, the fact that the CSC-like traits of LRCCs gradually decreased along with the fluorescence dilution strongly supports the hierarchical model of the CSC theory. More recently, the lineage tracing technique has been applied to demonstrate that the hierarchical organization of tumors is driven by CSCs, especially by quiescent cancer cells [10,50,51]. Although increasing evidence stresses the importance of LRCCs in tumor initiation, to the best of our knowledge, a method of eliminating LRCCs or quiescent cancer cells has not yet been described.

We demonstrated that slow-growing populations, PKH^hi^ cells, were especially sensitive to IFN-γ treatment, the only member of the Type II interferon family, resulting in dramatic apoptosis both in vitro and in vivo, whereas PKH^low^ and PKH^neg^ cells were less responsive. This interesting result led us to investigate the mechanism behind the difference in apoptosis levels.

Because we showed that the Jak-Stat1 pathway in our primary cell lines was intact (Supplementary Fig. S3C), we hypothesized that the different responses to IFN-γ treatment among the PKH^low^, PKH^hi^, and PKH^neg^ populations might contribute to their IFN-γ expression levels. In fact, FCM analyses confirmed our speculation that the IFN-γ levels in the three cellular subsets. Based on the core position of IRF-1 in IFN-γ-induced apoptosis [36,52,53], we assessed the expression level of IRF-1 in the three populations after IFN-γ treatment and found that its expression corresponded well with the different IFN-γ levels in the three cellular subsets. Moreover, blocking IFN-γRα greatly inhibited the apoptotic function of IFN-γ in PKH^hi^ cells, which could be further evidence that the IFN-γR levels are indicative of cellular fate.

Table 1

<table>
<thead>
<tr>
<th>Pre-treated cell types</th>
<th>No. of cells injected</th>
<th>Tumor incidence</th>
<th>Latency (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.5 × 10^3</td>
<td>5/5</td>
<td>28</td>
</tr>
<tr>
<td>5 × 10^3</td>
<td>5/5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Oxa</td>
<td>2.5 × 10^3</td>
<td>5/5</td>
<td>21</td>
</tr>
<tr>
<td>5 × 10^3</td>
<td>5/5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>2.5 × 10^3</td>
<td>5/5</td>
<td>28</td>
</tr>
<tr>
<td>5 × 10^3</td>
<td>3/5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Oxa + IFN-γ</td>
<td>2.5 × 10^3</td>
<td>3/5</td>
<td>42</td>
</tr>
<tr>
<td>5 × 10^3</td>
<td>5/5</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: Oxa, Oxaliplatin.
Additionally, previous phases I–III trials have already demonstrated that combination therapy of IFN-γ with cisplatin and cyclophosphamide is an effective first-line treatment for patients with advanced ovarian cancer, with an improvement in progression-free survival [20,54] and well-tolerated side effects. However, the exact effect of IFN-γ combined with platinum-based treatment in colon cancer is still unclear. Here, we first report that combination therapy with Oxa and IFN-γ can synergistically eradicate LRCCs and non-LRCCs (Fig. 6), which has implications for future clinical translation.

Our finding that the expression of IFN-γR rapidly decreases when cells undergo self-renewal and proliferation partly explains the mechanism of cancer cell immune escape. However, we acknowledge that the mechanism behind the different IFN-γR expression levels in the three populations is still undetermined. The hierarchical relationship among the three subsets may be due to genetic or epigenetic modulation occurring along with the self-renewal process. Elucidating this mechanism could provide a solid foundation for clinical applications and even provide a potential novel anti-cancer approach.

Conflict of Interest

None.

Acknowledgments

We thank Dr. Ke Wang for his excellent work in the primary colon cancer cells preparation, and the support of core faculties of Zhejiang University, School of Medicine. This study is support by the National Natural Science Foundation of China (No. 91019005), Zhejiang Province and Ministry of Health (Grant No. 2012ZDA021), Nature science foundation of Zhejiang Province (Grant No. Y2110034; Y2100414) and major plan of Zhejiang Science and Technology Department (Grant No. 2011c13034–1).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.canlet.2013.04.029.

References