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Introduction: To reduce continuously increasing costs in drug development, adverse 
effects of drugs need to be detected as early as possible in the process. In recent years, 
compound-induced gene expression profiling methodologies have been developed to 
assess compound toxicity, including Gene Ontology term and pathway over-representation 
analyses. The objective of this study was to introduce an additional approach, in which 
literature information is used for compound profiling to evaluate compound toxicity and 
mode of toxicity. Methods: Gene annotations were built by text mining in Medline 
abstracts for retrieval of co-publications between genes, pathology terms, biological 
processes and pathways. This literature information was used to generate 
compound-specific keyword fingerprints, representing over-represented keywords 
calculated in a set of regulated genes after compound administration. To see whether 
keyword fingerprints can be used for assessment of compound toxicity, we analyzed 
microarray data sets of rat liver treated with 11 hepatotoxicants. Results: Analysis of 
keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two 
peroxisome proliferators and two randomly generated gene sets, showed that each 
compound produced a specific keyword fingerprint that correlated with the 
experimentally observed histopathological events induced by the individual compounds. 
By contrast, the random sets produced a flat aspecific keyword profile, indicating that the 
fingerprints induced by the compounds reflect biological events rather than random noise. 
A more detailed analysis of the keyword profiles of diethylhexylphthalate, 
dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword 
fingerprints of these three compounds are based upon known distinct modes of action. 
Visualization of MPy-linked keywords and MPy-induced genes in a literature network 
enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with 
known effects of MPy in literature. Conclusion: Compound keyword fingerprinting based 
on information retrieved from literature is a powerful approach for compound profiling, 
allowing evaluation of compound toxicity and analysis of the mode of action.
In the drug development process it is impor-
tant that any toxicity of new compounds is rec-
ognized as early as possible to guarantee drug
safety and to reduce the costs of drug develop-
ment [1]. Classical methods of toxicity evalua-
tion of compounds involve elaborate and time-
consuming animal experiments in which a
number of measurements are carried out to
evaluate toxicity, including clinical chemistry,
hematology, histopathology and in vitro assays.

In recent years, toxicogenomics has emerged
as a new methodology to evaluate compound
toxicity. With toxicogenomics, compound-
induced gene expression profiles are analyzed to
detect indications of toxicity and, as such, may
provide a promising way to rapidly screen for
adverse drug effects [2,3]. The challenge in this
approach is to infer toxicity of the compound

from the gene expression profiles in order to
predict the toxicity of a compound and to
resolve the underlying mechanism of toxicity.

One approach relies on comparison of observed
gene expression profiles with a database of expres-
sion profiles for reference compounds with known
toxic effects [4].

Another approach consists of the analysis of the
annotation of the genes that are differentially
expressed in a drug-treated sample. Multiple algo-
rithms exist that analyze gene sets for the presence
of over-represented Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) or
other annotation terms [5,6]. These algorithms have
been applied successfully to elucidate toxic effects
and mode of action of a number of compounds [7].

In this paper we want to introduce an addi-
tional approach to link gene expression profiles to
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toxicity. We developed a tool named CoPub that
is able to calculate keyword over-representation
in a similar fashion to general GO term over-rep-
resentation tools but, in our approach, the anno-
tation of the genes is retrieved directly from
Medline by text mining [101]. Medline represents
an enormous amount of information on the
function of genes/proteins and their role in the
onset of toxicity, and is therefore an ideal source
to identify relations between the expression of
genes and toxicity end points.

Several text mining methods for the analysis
of microarray data have been published, includ-
ing methods for the generation of literature
neighborhoods from regulated genes [8] and clus-
tering a set of regulated genes based on their lit-
erature profile [9–13]. Other methods are aimed at
annotating gene sets that are obtained by cluster-
ing of genes based on their expression profile,
often based on subsets of the total Medline
repository [14,15]. CoPub uses the entire Medline
library to calculate robust statistics for gene-key-
word co-occurrence, and is not dependent on
preclustered gene sets to calculate significance
for keyword over-representation.

CoPub is built on the assumption that co-cita-
tion of a gene and a keyword in the same
Medline abstract is indicative of a relation
between the gene and the keyword and that the
keyword thus represents some sort of annotation
of the gene. Using thesaurus-based keyword
matching [8,16,17] with thesauri for genes, biolog-
ical processes, drugs, liver pathologies and dis-
eases, all keyword co-publication hits in the
Medline abstracts database are collected. This
co-publication information is then used to calcu-
late keyword over-representation in sets of genes
that are differentially expressed in compound-
treated samples. The list of over-represented key-
words can be analyzed subsequently to assess the
toxicity and mode of toxicity of the compounds
that are tested. 

To demonstrate the value of CoPub, we applied
this text mining tool to two microarray data sets.
In one experiment, male Wistar Hanover rats were
dosed daily by gavage with four nongenotoxic car-
cinogens; methapyrilene (MPy), diethylstilbestrol
(DES), Wy-14643 (Wy) and piperonylbutoxide
(PBO), and four genotoxic carcinogens; 4-(meth-
ylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK),
2-nitrofluorene (2-NF), dimethylnitrosamine
(DMN) and aflatoxin B1 (AB1) [18,19]. In the
other experiment, Sprague-Dawley rats were given
a single dose by oral administration with three
peroxisome proliferators: clofibrate (Clo), valproic

acid (VPA) and diethylhexylphthalate (DEHP)
[20]. Histological examination of the livers treated
with the four genotoxic carcinogens showed
increasing necrosis after DMN and AB1 treat-
ment, which was accompanied by reactive inflam-
mation in both cases [19]. 2-NF induced modest
hypertrophy and NNK showed only weak apop-
tosis after 14 days of treatment [19]. On a his-
topathological level, all four nongenotoxic
carcinogens were shown to induce weak (PBO) to
moderate (DES, Wy, MPy) hyperplasia and
hypertrophy. MPy induced apoptosis with
increasing severity over time, causing weak inflam-
mation [18]. Histopathological examination of the
livers treated with the three peroxisome prolifera-
tors Clo, DEHP and VPA showed some vacuola-
tion, hypertrophy and increased mitotic
figures [20].

Using CoPub, we generated keyword finger-
prints for each of the compounds. Detailed exami-
nation of the regulated gene sets and their over-
represented keywords for a genotoxic carcinogen, a
nongenotoxic carcinogen and a peroxisome prolif-
erator revealed mechanisms of toxicity for these
compounds that correlate well with histopatholog-
ical data. These results show that text mining of
gene expression data, as implemented in CoPub, is
a valuable tool for early screening of compounds
for toxic effects.

Material & methods
Medline search strings definitions
Four thesauri were generated to search Medline:

• Genes (human, mouse, rat)

• Liver pathologies

• Biological processes

• Pathways

The keyword thesauri are based on biological
items, which represent an instance of a biological
concept (e.g., a gene, a pathway), and may con-
tain one or more keywords (e.g., a gene is
assigned a full gene name and/or a gene symbol).

Human, mouse and rat gene thesauri were com-
piled from the National Center for Biotechnology
Information’s (NCBI’s) Entrez Gene database
(released December 2005) [21,102]. In order to
search Medline with one or more full gene names,
gene symbols and aliases, the gene name thesauri
were processed as described by Alako et al. [16].
Gene names and symbols of orthologous genes
were combined to make the keyword search in
Medline more comprehensive. 

The pathology thesaurus contains 406 patho-
logy terms and was compiled from textbooks and
Pharmacogenomics (2007)  8(11) future science groupfuture science group
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is particularly focused on liver-specific pathologies
(e.g., cholestasis), but also contains less specific
liver pathologies (e.g., necrosis).

The GO biological process thesaurus was com-
piled from the GO database [103] and contains
5515 terms. 

The pathway thesaurus contains 817 pathway
names, compiled from the KEGG database [104],
the encyclopedia of human genes and metabolism
database [105] and the Reactome database [106].

The full Medline baseline XML files (between
1966 and April 2006) were obtained from the
NCBI website [107] and extracted to small text
files containing title, abstract and substances. 

Regular expressions were used to search the
compiled Medline text files for the presence of
all keywords (∼250,000) from the biological
concept thesauri, as described by Alako et al. [16].
Keywords that generated a hit in a Medline
abstract were stored, together with the PubMed
identifiers (IDs) of the Medline records in which
the hit occurred. For every biological item the
hits were made nonredundant (note: multiple
keywords of a biological item can occur in the
same Medline abstract), resulting in a PubMed
ID–biological item list. Gene symbols were
curated for ambiguity [Frijters et al., manuscript
in preparation].

Co-publication of biological items (e.g., a gene
with a pathology term) was retrieved from the
database by matching common Medline abstract
occurrences. An R-scaled score, described by
Alako et al. [16], that describes the strength of a co-
citation between two keywords given their indi-
vidual frequencies of occurrence and the number
of co-publications between every biological item
pair was calculated in order to assign a degree of
relation between two keywords.

The R-scaled score is based on the mutual
information measure and was calculated as:

in which PA is the number of hits for biological
item A divided by the total number of PubMed
IDs, PB is the number of hits for biological item
B divided by the total number of PubMed IDs,
and PAB is the number of co-occurrences
between biological item A and biological item B
divided by the total number of PubMed IDs.
The relative score is produced as a 1–100 scaled
log10 conversion (R = 10log S) and the scaled-
log-transformed relative score (R-scaled score)
as: 

 here Rmin and Rmax are the lowest and highest R
values present in the biological item co-publication
list, respectively.

Publicly available microarray data sets from
hepatotoxicity studies on genotoxic and nongeno-
toxic carcinogens, and peroxisome proliferators
were downloaded from the EBI (European Bioin-
formatics Institute) ArrayExpress database (E-
TOXM-16 and E-TOXM-19 datasets) [22,108]. 

The downloaded .CEL files were imported in
Rosetta Resolver v5.1 (Rosetta, Seattle, WA, US),
and differentially expressed genes (p-value ≤ 0.01,
fold-change ≥2 or ≤-2) were selected with the
implemented Rosetta Resolver error-model using
the corresponding time-matched controls. Control
gene sets were generated by randomly selecting
two sets of respectively 100, 150, 200, 250 and
300 Affymetrix probe set identifiers from the RG-
U34A GeneChip array.

Links from Affymetrix IDs to Entrez Gene
IDs and orthology information was retrieved
from Affymetrix human, mouse, rat GeneChip
Genome Array annotation files (sep. 2005) [109].

To determine keywords that are over-repre-
sented in a given gene set, all keywords that were
associated with a gene (defined as having at least
five co-citations) were collected. The same was
done for the background set of genes consisting of
nondifferentially expressed genes on the array. The
degree of association between the gene set and a
keyword was then determined using the Fisher
Exact Test. Keywords associated with at least four
genes in the gene set and with a p-value not more
than 0.01 were marked as over-represented in the
gene set after multiple test correction using the
Benjamini-Hochberg correction, as implemented
in the R Statistics package [110]. These settings were
empirically determined following analyzed micro-
array data sets with known biological outcome
(data not shown). We did not make a distinction
between down- and upregulated genes in the regu-
lated gene sets, because a priori it cannot be estab-
lished whether upregulation or downregulation of
a gene will contribute to the toxicity.

All statistical tests were done using the R Statis-
tics package [110]. The literature network between
over-represented keywords and genes (nodes) and
their co-publications (edges) were visualized using
Cytoscape software [23,111].

Results
Compound keyword fingerprints
To see whether toxicity of a compound can be
assessed from the literature by keywords associated
with the compound’s gene expression profile, two

S PAB PA PB×⁄=

R' 1 99 R Rmin–( )× Rmax Rmin–( )⁄+=
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microarray data sets, including 11 hepatotoxicants,
were analyzed. One data set was generated by treat-
ment of rat liver with eight hepatocarcinogens [18]

and the other by treatment of rat liver with three
peroxisome proliferators [20]. The 11 compounds
were analyzed for gene expression profiling and
included four nongenotoxic hepatocarcinogens:
MPy, DES, Wy and PBO; four genotoxic hepato-
carcinogens: 2-NF, DMN, NNK and AB1; and
three peroxisome proliferators: Clo, VPA and
DEHP. It should be noted that Wy is also known
as a potent peroxisome proliferator, and that per-
oxisome proliferators, if chronically administered,
are carcinogenic (nongenotoxic) in rodents.

We identified sets of regulated genes for each
of the 11 compounds using the raw data at the
time point on which the compounds revealed
their effects on a histopathological level; for the
eight carcinogenic compounds this was after
7 days of compound administration, and for the
three peroxisome proliferators after 2 days of
compound administration. These gene sets were
then analyzed for keyword over-representation,
generating a keyword fingerprint for each com-
pound (the keyword fingerprints are available in
the online web supplement).

To study whether keyword fingerprints can be
used to discriminate between compounds with
different modes of action, we compared keyword
fingerprints of two genotoxic carcinogens
(DMN and AB1), two nongenotoxic carcino-
gens (MPy and PBO), two peroxisome prolife-
rators (DEHP and VPA) and of two randomly
generated gene sets (150 and 250 randomly
selected Affymetrix probe set identifiers). For
ease of comparison the keywords were catego-
rized into 13 groups: pathogenesis, drug metabo-
lism, oxidative stress, DNA damage and
response, cell cycle and mitosis, apoptosis and
cell death, inflammation and immune response,
cell differentiation and development, steroid
metabolism, lipid metabolism, energy metabo-
lism, general cell metabolism, and miscellaneous
keywords. The profiles of the keyword finger-
prints are visualized in Figure 1 (the categories and
their corresponding keywords can be retrieved
from the online web supplement).

Notable differences in the keyword profiles can
be appreciated in Figure 1. The keywords of the two
peroxisome proliferators DEHP and VPA are
mainly grouped into the steroid, lipid, and energy
metabolism categories. The keyword fingerprints
of DMN and AB1 strongly reflect processes of cell
death, accompanied by inflammation, a hallmark
of most genotoxic carcinogens, whereas oxidative

stress, found with many nongenotoxic carcino-
gens, is found predominantly with PBO and MPy.
Some categories are hit by all compounds, such as
drug metabolism, general cell metabolism and, to a
lesser extent, pathogenesis. Similar profiles were
observed for the other compounds, although these
profiles were less pronounced due to the fact that
these compounds induced a smaller number of
genes. All of the randomly generated gene sets pro-
duced flat profiles with no keyword enrichment,
indicating that the keyword fingerprints of the
analyzed hepatotoxicants reflect real biological
processes rather than random noise.

These results show that literature associations
between genes and keywords can be used to dis-
criminate between compounds with distinct
biological activities.

Comparing keyword fingerprints
To see if the observed distinct fingerprints
between compounds reflects the biological and
toxicological effects of the compounds, we ana-
lyzed the keyword fingerprints of a peroxisome
proliferator (DEHP), a genotoxic carcinogen
(DMN) and a nongenotoxic carcinogen (MPy),
in more detail (Table 1; Note: To reduce the size
of Table 1 we do not show p-values. Compound-
specific keyword fingerprints, representing over-
represented keywords with their p-values, can be
retrieved from the online web supplement).

Keyword fingerprint of DEHP
DEHP is widely used as a plasticizer in manu-
facturing of a wide variety of polyvinyl chloride
(PVC)-containing medical and consumer prod-
ucts. DEHP belongs to the class of peroxisome
proliferators that induce enlargement and pro-
liferation of peroxisomes, resulting in an eleva-
tion of fatty acid metabolism, which is
characteristic of this class of chemicals [24]. This
elevated level in lipid metabolism is thought to
be caused by the activation of the nuclear recep-
tor peroxisome proliferator-activated receptor
(PPAR)-α, which is the key mediator of lipid
metabolism [25]. Peroxisome proliferators, when
chronically administered, are also known to
induce tumor formation in a nongenotoxic
fashion (i.e., not via direct DNA damage)
[24,25], although it is not completely clear by
which mechanism. 

On a histopathological level, after 2 days of
DEHP administration some vacuolation, hyper-
trophy and increases in mitotic figures were
observed [20]. The observed hypertrophy is due
to enlargement of liver cells caused by an
Pharmacogenomics (2007)  8(11) future science groupfuture science group
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Figure 1. Keyword p
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increase in the number of peroxisomes, most
likely via activation of PPAR-α [25]. The
observed vacuolation is often caused by accumu-
lation of lipids in the cells. The profile of the
keyword fingerprint of DEHP (Figure 1), shows
that DEHP largely has its effect on lipid metabo-
lism and energy metabolism, which is in agree-
ment with the observed pathologies and with
known effects of peroxisome proliferators. Key-
words in the fingerprint of DEHP (Table 1  and
online web supplement) support its lipogenic
effect, with low p-values for keywords such as
lipid metabolism, fatty acid oxidation, fatty acid
β-oxidation and hypertrophy.

Keyword fingerprint of DMN
DMN is a genotoxic carcinogen (i.e., causes direct
DNA damage) and is present in cigarette smoke
and certain foods [26], and its observed toxicity is
caused by its metabolites via methylation of DNA
bases and proteins, eventually leading to the for-
mation of tumors [19,27–29]. On a histopathological
level, DMN administration results in a reactive

inflammatory response, necrosis, bile duct hyper-
plasia and fibrosis [19,28,30].

DMN is known to induce a strong reactive
inflammatory response upon administration in
reaction to the onset of necrosis [19] and is followed
by postnecrotic tissue remodeling [31,32]. In this
process, macrophages infiltrate the liver to remove
necrotic cells and activated hepatic stellate cells
(HSCs) migrate to necrotic areas to secrete colla-
gen and to promote the formation of sinusoidal
wall, resulting in the formation of scar tissue [31].

The profile of the keyword fingerprint of DMN
(Figure 1) is in agreement with the observation that
DMN causes a strong inflammatory response fol-
lowing necrosis – as a relatively high number of
keywords are grouped in the inflammatory and
immune response category (e.g., immune system,
inflammatory response and inflammation) – and
that necrosis was one of the keywords with the
lowest p-value (Table 1  and online web supple-
ment). Furthermore, a relatively high number of
keywords are grouped in the cell differentiation
and development category (e.g., cell development,

rofiles of DMN, AB1, MPy, PBO, DEHP and VPA.

esented keywords (p ≤ 0.01), grouped in 13 biological process categories, of two genotoxic carcinogens; DMN 
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Table 1. Keyword o
methapyrilene-regu

Category DEH

Pathogenesis Liver
Cirrh
Hype
Hepa
carci
Steat
Patho
Galls

Drug 
metabolism

Drug
Xeno
meta
resist

Oxidative 
stress

DNA damage 
and response

Muta

Cell cycle and 
mitosis

Grow

Apoptosis and 
cell death

Inflammation 
and immune 
response

Inflam

Cell 
differentiation 
and 
development

Agin
ver-representation for diethylhexylphthalate-, dimethylnitrosamine- and 
lated genes .

P DMN MPy

 tumor, Necrosis, 
osis, Hepatitis, 
rtrophy, 
tocellular 

noma, Cholestasis, 
osis, Hyperplasia, 
genesis, 

tone formation

Hepatocellular carcinoma, Hepatitis, Necrosis, 
Cirrhosis, Adenocarcinoma, Pathogenesis, 
Leukemia, Adenoma, Sarcoma, Fibrosis, 
Malignant tumor, Hyperplasia, Granuloma, 
Liver tumor, Angiogenesis, Hypertrophy, 
Atrophy, Edema, Metaplasia, Hyperplastic 
nodule, Ascites, Fever, Liver fibrosis, 
Lymphocytic leukemia, Biliary cirrhosis, 
Oncogenesis, Hypoplasia

Necrosis, Adenocarcinoma, 
Hepatocellular carcinoma, Cirrhosis, 
Hepatitis, Hyperplastic nodule, 
Leukemia, Pathogenesis, Liver 
tumor, Hepatocellular adenoma, 
Ascites, Adenoma, Sarcoma, 
Telangiectasia, Biliary cirrhosis, 
Fibrosis, Hypertrophy, Hyperplasia

 metabolism, 
biotic 
bolism, Drug 
ance

Drug metabolism, Drug resistance, Xenobiotic 
metabolism

Drug resistance, Drug metabolism, 
Xenobiotic metabolism, Drug 
transport

Response to oxidative stress, 
Glutathione biosynthesis, 
Glutathione metabolism

genesis Mutagenesis, Cell cycle arrest, Stabilization of 
p53, Mismatch repair, Nucleotide excision 
repair, DNA damage response

DNA damage response, DNA repair, 
Cell cycle arrest, Stabilization of 
p53, Mismatch repair, Mutagenesis

th, Growth rate Cell cycle, Growth, DNA synthesis, Cell 
proliferation, Cell growth, Growth rate, DNA 
replication, Cell division, DNA amplification, 
G2 phase, M phase

Cell cycle, Growth, Cell growth, 
M phase, Growth rate, G1 phase, 
DNA synthesis, Pachytene, G2 
phase, Cell cycle checkpoint, Cell 
cycle, mitotic, S phase, Prophase, 
Transcription, mitotic, DNA 
replication, Cell proliferation, 
Mitosis, Cell cycle, Chromosome 
movement, Single-stranded DNA 
binding, Telophase, G2/M 
checkpoint, Chromatin remodeling, 
Meiosis, Division

Apoptosis, Cell death, Induction of apoptosis, 
DNA fragmentation, Programmed cell death

Induction of apoptosis, Cell death, 
DNA fragmentation, Apoptosis, 
Programmed cell death, Caspase 
activation, Anti-apoptosis

mation Immune response, Antigen processing and 
presentation, Inflammatory response, Immune 
system, Antigen processing, Inflammation, 
Antigen presentation, Macrophage activation, 
B-cell differentiation, B-cell activation, T-cell 
activation, T-cell proliferation, Cytokine 
biosynthesis, Activation of MAPK, Chronic 
inflammation, Lymphocyte activation, 
Macrophage differentiation, Cell recognition, 
Mononuclear cell infiltration, Lymphocyte 
differentiation, Cell-mediated immune 
response, Humoral immune response, Cell 
invasion, Inflammatory cell infiltration, 
Monocyte activation, Antiviral response

Inflammation, T-cell proliferation, 
B-cell activation, Macrophage 
activation, Lymphocyte activation, 
Inflammatory response, Immune 
response, Antigen processing, 
Cytokine biosynthesis, Chronic 
inflammation, Antigen processing 
and presentation, Immune system, 
B-cell differentiation, Macrophage 
differentiation

g, Senescence Cell development, Aging, Cell differentiation, 
Cell maturation, Endothelial cell 
differentiation, Myogenesis, Embryonic 
development, Cytokinesis, Brain development, 
Myoblast differentiation

Aging, Cell differentiation, 
Senescence, Epithelial cell 
differentiation
Pharmacogenomics (2007)  8(11) future science groupfuture science group
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Category DEH

Steroid 
metabolism

Stero
Chol
meta
meta

Lipid 
metabolism

Lipid
acid 
Lipop
meta
Lipop
activ
trans

Energy 
metabolism

Fatty
Ener
Pyruv
dehy
acid 
Glyco
meta
phos
NAD
Glyo
Elect
Trica

General cell 
metabolism

Meta
Biosy
Cata
Trans
Excre
Gluc
Carb
meta
meta
catab
meta
foldin
Gluc
acid 
Prote
meta
Prote

Miscellaneous Enzy
Trans
Conj
press
Biolo

Results of the keyword ove
administration. Note: the k
highest p-value). 

DEHP: Diethylhexylphthala

Table 1. Keyword o
methapyrilene-regu
P DMN MPy

id metabolism, 
esterol 
bolism, Sterol 
bolism

Steroid metabolism

 metabolism, Fatty 
metabolism, 
rotein 
bolism, 
rotein lipase 

ity, Fatty acid 
port

Lipid metabolism, Lipid transport

 acid oxidation, 
gy metabolism, 
ate 
drogenase, Fatty 
beta-oxidation, 
lysis, Glucose 
bolism, Pentose 
phate pathway, 
H metabolism, 
xylate metabolism, 
ron transport, 
rboxylic acid cycle

Energy metabolism, Respiratory burst, Electron 
transport

Energy metabolism

bolism, 
nthesis, 
bolism, 
cription, 
tion, Homeostasis, 
oneogenesis, 
ohydrate 
bolism, Ethanol 
bolism, Protein 
olism, Nitrogen 
bolism, Protein 
g, Fermentation, 

ose uptake, Amino 
metabolism, 
oglycan 
bolism, Secretion, 
in biosynthesis

Metabolism, Phagocytosis, Transcription, 
Biosynthesis, Translation, Secretion, Excretion, 
Glycosylation, Peptide transport, DNA 
methylation, Endocytosis, Phosphorylation, 
Protein stabilization, Homeostasis, Actin 
polymerization, Dephosphorylation, mRNA 
splicing, Autophosphorylation, N-glycosylation

Metabolism, Biosynthesis, 
Translation, Transcription, 
Catabolism, Ribosome, Protein 
biosynthesis, Heme metabolism, 
Response to stress, Cell 
homeostasis, Excretion, Protein 
metabolism, Phosphorylation, 
Histone acetylation, 
Dephosphorylation, Nitrogen 
metabolism, DNA methylation, 
Protein denaturation, Response to 
heat

me activity, 
port, Digestion, 
ugation, Blood 
ure, Development, 
gical process

Transport, Digestion, Cell activation, 
Development, Fragmentation, Cell adhesion, 
Cytoskeleton, Recombination, Transduction, 
Migration, Proteasome, Cell migration, Signal 
transduction, Memory, Virulence, Chemotaxis, 
Growth pattern, Conjugation, Cell-cell 
adhesion, Blood pressure, Wound healing

Fragmentation, Enzyme activity, 
Transport, Conjugation, 
Myelination, Transduction, 
Proteasome, Cell activation, 
Development, Digestion, Signal 
transduction, Sensitization, Cell 
adhesion, Heme biosynthesis, Viral 
replication

r-representation calculation, performed with both up- and downregulated genes after DEHP, DMN and MPy 
eywords are ranked from highest scoring keyword (i.e. with lowest p-value) to lowest scoring keyword (i.e., with 

te; DMN: Dimethylnitrosamine; MPy: Methapyrilene.

ver-representation for diethylhexylphthalate-, dimethylnitrosamine- and 
lated genes (cont.).
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cell differentiation and cell maturation) and,
together with keywords such as cell migration and
cell activation (both miscellaneous category), may
point to tissue remodeling, since migration, acti-
vation and differentiation of various cells occur in
this process.

Interestingly, fibrosis and cirrhosis are two of
the DMN-linked keywords in the pathogenesis
category with low p-values. This might be corre-
lated with the activation of HSCs by DMN,
since excessive deposition of collagen can lead to
fibrosis [33] and can result in cirrhosis if it
becomes chronic [34].

Keyword fingerprint of MPy
MPy is a H1 histamine receptor antagonist [35]

found in anti-influenza medicine that was used
in the 1970s until it became known to cause
cancer in rats [18,36]. MPy is a nongenotoxic
carcinogen [37,38] stimulating the development
of tumors, most likely via cell proliferative initi-
ation and/or oxidative properties of MPy or its
metabolites [39,40]. On a histopathological
level, MPy administration results in inflamma-
tion of the liver, hepatocellular periportal necro-
sis, bile duct hypertrophy, periportal lipid
vacuolization and apoptosis [18,36]. Interestingly,
the effect of MPy appears to be species specific;
no tumor formation is observed in mice, guinea-
pigs, hamsters or humans [37,41,42].

It has been reported that the cytotoxicity of
MPy leads to necrosis, and consequently induces
regenerative cell proliferation to replace necrotic
cells [18,43] and that oxidative stress is proposed
to be one of the causes of the cytotoxic nature of
MPy [44]. These findings reflect the profile of the
keyword fingerprint of MPy (Figure 1) in that
keywords related to oxidative stress, apopto-
sis/cell death and cell cycle/mitosis are promi-
nent in this profile. Furthermore, keywords
related to an inflammatory/immune response
(e.g., inflammation and T-cell proliferation) can
be correlated with the observed inflammation
after MPy administration.

In short, the analysis of the keyword finger-
prints of DEHP, MPy and DMN shows that the
findings agree with the known effects of DEHP,
MPy and DMN, and that the distinct profiles of
the three compounds can be explained by the fact
that they have different modes of action, leading
to distinct toxic end points.

MPy: mode of action
To validate whether compound keyword finger-
prints represent a realistic profile of the toxic

outcome and mode of action of a particular
compound, we compared in more detail the
keyword fingerprint of MPy with observed
toxic effects and proposed mode(s) of action of
MPy, since MPy is a well-described carcinogen
in the literature.

For this, we focused on the keyword over-
representation results after day 7 of MPy treat-
ment, which are shown in Table 1. At this time
point, 171 genes are differentially expressed,
and 118 keywords (p-value ≤ 0.01) are over-
represented in this set of genes.

Drug metabolism
Four over-represented keywords were classified
in the drug metabolism category: xenobiotic
metabolism, drug resistance, drug transport and
drug metabolism (Table 1). Genes associated
with these keywords are P-glycoprotein/multi-
drug resistance 1 (Abcb1), ATP-binding cas-
sette, subfamily C (CFTR/MRP), member 3
(Abcc3) and Glutathione-S-transferase, α-1/2
(Gstα1/Gstα2), and are involved in glucoroni-
dation and secretion of xenobiotics into
bile [45–47]. These findings most likely indicate
the detoxification and clearance process of MPy
and its metabolites. 

Inflammatory response
The presence of significant keywords that are
associated with an immune reaction (e.g., inflam-
mation and immune response; Table 1) suggests an
inflammatory response upon MPy administra-
tion. Hamadeh and coworkers treated rats with
100 mg/kg/day MPy for 7 days [36], and histo-
pathological examination of the livers of these rats
showed portal inflammation and minimal mono-
nuclear portal infiltrates, indicating the onset of
an inflammatory response, which is in agreement
with the keywords that we find as statistically sig-
nificant in the inflammation and immune
response category. Examination of genes that are
associated with significant keywords in this cate-
gory are involved in cell activation and prolifera-
tion, such as IL-15 and RT1 class II, locus Bb
(Rt1-Bb) protein.

Pathogenesis
In the pathogenesis category, the highest scoring
keyword is necrosis (Table 1  and online web sup-
plement); this finding is in agreement with histo-
pathological analyses of MPy experiments, carried
out separately by Hamadeh [36] and Ellinger-
Ziegelbauer [18]. These experiments showed the
occurrence of mild necrosis after 3 days of MPy
Pharmacogenomics (2007)  8(11) future science groupfuture science group
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treatment, which gradually increased in severity
over time (after 7 and 14 days). Most other key-
words in the pathology category are associated
with carcinogenesis (e.g., hepatocellular carci-
noma and liver tumor), inflammation (hepatitis)
and liver degeneration (cirrhosis). These key-
words are an indication of the nature of MPy as a
nongenotoxic carcinogen. Nongenotoxic carcino-
gens are characterized by their ability to induce
cell proliferation via mitogenic or cytotoxic
mechanisms [43]. MPy is an example of a cyto-
toxic carcinogen [43], which induces cell prolifera-
tion for compensatory, regenerative cell
proliferation, most likely to replace necrotic cells.
The keywords that are statistically significant in
the cell cycle and mitosis category (e.g., cell cycle
and G1/G2/S phase) in combination with the
keyword necrosis, strengthens the hypothesis that
MPy induces regenerative cell proliferation.
Examination of the regulated genes that are asso-
ciated with keywords in the cell cycle and mitosis
category shows genes involved in regulating the
cell cycle: cyclin B1 (Ccnb1), cyclin D1 (Ccnd1)
and cell cycle division 2 homolog (Cdc2a).

Oxidative stress
The regenerative cell proliferation abilities of MPy
alone do not explain the carcinogenic nature of
this compound; that is, it needs a trigger. MPy
hepatotoxicity is reported to be caused by oxidative
stress [44]. Oxidative stress is a cellular state in
which there is an imbalance between free radicals
and antioxidants. Oxidative stress can be the result
of excessive formation of reactive oxygen species on
the one hand, and the depletion of antioxidants,
for example depletion of glutathione due to drug
detoxification, on the other hand. The property of
MPy causing oxidative stress might be the trigger,
in combination with its regenerative cell prolifera-
tion abilities, to the onset of carcinogenesis. This
can be explained by the fact that DNA replication
is not error proof and, in combination with oxida-
tive stress, increases the risk of DNA damage [43,48].
The enriched keywords response to oxidative stress
and glutathione metabolism points to a reaction to
prevent oxidative stress in the cell. Regulated genes
associated with these keywords are heme
oxygenase 1 (Hmox1), metallothionein 1 (Mt1a)
and glutathione synthetase (Gss), and they are
known to have a protective effect against oxidative
stress [49–51].

DNA damage & response
Oxidative stress can result in a higher DNA dam-
age incidence; this is in agreement with the

observation that genes involved in DNA repair
and the response to DNA damage are upregu-
lated after MPy treatment, such as the H2A his-
tone family, member X (H2afx), and the DNA-
damage inducible transcript 3 (Ddit3) genes.
This could explain the over-represented key-
words of the DNA damage and response cate-
gory (e.g., DNA repair and stabilization of p53;
Table 1), since MPy is a nongenotoxic carcinogen,
thereby implying that DNA damage is a second-
ary effect, possibly caused by oxidative stress,
although some studies demonstrate that MPy
and/or its metabolites have a low ability to bind
to DNA [52,53].

MPy or its metabolites cause mitochondrial
damage, resulting in function loss, indicated by
mitochondrial swelling and losses in cellular
ATP. Ratra and coworkers proposed a mecha-
nism of MPy hepatotoxicity in which mitochon-
drial function loss leads to a disturbed Ca2+

homeostasis, ultimately leading to cell death [44].
Bcl2-associated X protein (Bax) is one of the
genes upregulated and associated with the over-
represented keywords in the apoptosis and cell
death category. Bax is a pro-apoptotic factor
proposed to play a role in Ca2+ homeostasis, and
thereby is a regulator of apoptosis [54].

Visualization of MPy-induced effects in a 
literature-based network
Applying CoPub to sets of differentially expressed
genes gives insight into the separate biological
processes affected by MPy, but the relationships
between these processes and the most influential
genes are not immediately clear. To make these
relations visible, a network was generated in
Cytoscape, shown in Figure 2, in which differen-
tially expressed genes, together with over-
represented keywords, are mapped. To avoid an
over-complex network in which all keywords and
genes have a relationship, thresholds were set to
simplify the interpretation of the results. The
thresholds were set to at least five co-publications
between keywords and genes, with an R-scaled
score of at least 45.

In the generated network, various areas repre-
senting distinct biological processes can be distin-
guished (Figure 2). The most influential genes and
keywords are highly connected hubs. For exam-
ple, the growth arrest and DNA-damage-induci-
ble 45α (Gadd45α) gene is an important node
between oxidative stress, DNA damage and
response, apoptosis and cell death, and cell cycle
and mitosis. This gene is known to have a func-
tion as a regulator of the cell cycle and is activated
1529www.futuremedicine.com
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after DNA damage, helping to trigger
apoptosis [55]. The relationships between the vari-
ous biological processes in the network can easily
be appreciated; biologically, it makes sense that
the biological processes oxidative stress and DNA
damage and response are in the vicinity of each
other, as well as DNA damage and response, cell
cycle and mitosis, and apoptosis and cell death.
Visualization of regulated genes, keywords and
their relationships in a network gives an overview
of the biological processes on which MPy has an
effect, and is an informative tool to unravel MPy
toxicity and its mechanisms of action. 

Expert commentary
In this study, we introduced CoPub, a method
that uses information from literature to link
gene expression profiles to toxicity. With micro-
array data of eight hepatocarcinogens and three
peroxisome proliferators [18–20], we showed that
distinct keyword fingerprints of compounds can
be generated using literature information.

Comparing the keyword profiles of DEHP,
DMN and MPy shows that the keyword finger-
prints of the three compounds agree with known
observed pathologies, suggesting that the differ-
ences in the keyword fingerprints of the three
compounds are based on distinct modes of action.
This finding, together with the observation that
the randomly generated gene sets did not result in
over-represented keywords, indicates that litera-
ture information can indeed be used successfully
for compound profiling and that keyword finger-
prints reflect underlying biological processes.

The exact form of the keyword fingerprints
that are shown in Figure 1 is partly dependent on
the manual classification of the keywords in
13 high-level categories. Automatic literature-
based compound profiling would benefit from
structured vocabularies. Hierarchically ordered
ontologies could then be used to calculate a score
for every biological process, represented by a par-
ticular branch in the ontology, analogous to the
analysis of gene sets for over-represented GO
terms. Another possibility is to cluster the com-
pounds on individual keywords rather than using
higher level categories. We found that when we
used this approach the clustering result tended to
be dominated by relatively uninformative key-
words, such as ‘metabolism’ and ‘physiological
process’, with very low p-values (results not
shown). A way around this is to use keywords that
are very specific for the processes that we suspect
are most important in describing toxicological
events. Identification of these terms would

require a well-defined set of gene expression pro-
files of toxic compounds with well-defined mode
of action and toxicological end points.

CoPub is especially helpful for analyzing
expression profiles of new compounds with an
unknown mode of action. The over-represented
keywords themselves already give a general over-
view of the affected biological processes without
the need for reference compounds and an exten-
sive knowledge by the biologist on the upregulated
genes. Visualization of the keywords and the regu-
lated genes in a network, together with the rele-
vant abstracts in which these terms co-occur, gives
an adequate impression of the affected biological
processes by the tested compound and can provide
leads for further experimental evaluation. For
example, if the keyword profile of the tested com-
pound shows a relative high number of keywords
related to DNA damage, cell death and inflamma-
tion, then a mutagenicity test could be proposed
as a follow-up study, since genotoxic carcinogens
mostly hit these categories.

At this moment, our pathology thesaurus is pri-
marily based on liver-specific pathology keywords.
We could improve this thesaurus by adding other
organ-specific pathology keywords to the list, and
thereby broaden our perspective on compound
toxicity. With this information, the assignment of
organ-specific effects to compounds might be
within reach.

In conclusion, compound keyword finger-
printing based on information retrieved from lit-
erature is a powerful approach for compound
profiling, enabling compound toxicity evaluation
and mode of action unraveling, and made more
informative by visualization of over-represented
keywords and differentially expressed genes in a
literature network.

Future perspective
To reduce growing costs in drug development,
reducing the number of compounds with undesir-
able characteristics as early as possible in the devel-
opment process is an effective strategy. In recent
years, with the development of microarray tech-
nology, toxicogenomics has emerged as an impor-
tant tool for the evaluation of toxicity. The current
challenge is the translation of compound-induced
gene expression to the occurrence of toxicities.
With the development of more sophisticated tools
for data mining and gene set analysis, of which
CoPub is an example, predictive toxicology and
rapid compound evaluation becomes a feasible
approach for reducing compound attrition in the
drug development pipeline.
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Executive summary

• Toxicogenomics has emerged as a new methodology to evaluate compound toxicity and contribute 
to guaranteeing drug safety and reducing costs in the drug development pipeline.

• We introduced an additional approach for compound toxicity evaluation, in which literature 
information is used for compound profiling.

• Distinct keyword fingerprints were generated for compound profiling, representing enriched 
keywords in a compound-induced gene set.

• Comparing the three keyword fingerprints of diethylhexylphthalate (DEHP), methapyrilene (MPy) and 
dimethylnitrosamine (DMN) revealed that the findings agree with known effects of DEHP, MPy and 
DMN, and that the apparently distinct profiles can be explained by the fact that the three compounds 
have different modes of action, leading to distinct toxic end points.

• MPy-linked keywords agree with known MPy-affected biological processes and pathways, showing 
that keyword fingerprints represent relevant biological information.

• Visualization of MPy-linked keywords and MPy-induced genes in a literature-based network enabled 
us to construct a mode of toxicity proposal for MPy.

• Compound keyword fingerprinting based on information retrieved from literature is a powerful 
approach for compound profiling, allowing evaluation of compound toxicity and analysis of the 
mode of action.
Bibliography
Papers of special note have been highlighted as 
either of interest (•) or of considerable interest (••) 
to readers.
1. Walmsley RM: Genotoxicity screening: the 

slow march to the future. Expert Opin. Drug 
Metab. Toxicol. 1(2), 261–268 (2005).

2. Afshari CA, Nuwaysir EF, Barrett JC: 
Application of complementary DNA 
microarray technology to carcinogen 
identification, toxicology, and drug safety 
evaluation. Cancer Res. 59(19), 4759–4760 
(1999).

3. Nuwaysir EF, Bittner M, Trent J, Barrett JC, 
Afshari CA: Microarrays and toxicology: the 
advent of toxicogenomics. Mol. Carcinog. 
24(3), 153–159 (1999).

4. Castle AL, Carver MP, Mendrick DL: 
Toxicogenomics: a new revolution in drug 
safety. Drug Discov. Today 7(13), 728–736 
(2002).

5. Subramanian A, Tamayo P, Mootha VK 
et al.: Gene set enrichment analysis: a 
knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl 
Acad. Sci. USA 102(43), 15545–15550 
(2005).

6. Yi M, Horton JD, Cohen JC, Hobbs HH, 
Stephens RM: WholePathwayScope: a 
comprehensive pathway-based analysis tool 
for high-throughput data. BMC 
Bioinformatics 7, 30 (2006).

7. Currie RA, Bombail V, Oliver JD et al.: 
Gene ontology mapping as an unbiased 
method for identifying molecular pathways 
and processes affected by toxicant exposure: 
application to acute effects caused by the 
rodent non-genotoxic carcinogen 
diethylhexylphthalate. Toxicol Sci. 86(2), 
453–469 (2005).

8. Jenssen TK, Laegreid A, Komorowski J, 
Hovig E: A literature network of human 

genes for high-throughput analysis of gene 
expression. Nat. Genet. 28(1), 21–28 (2001).

9. Jelier R, Jenster G, Dorssers LC et al.: Text-
derived concept profiles support assessment 
of DNA microarray data for acute myeloid 
leukemia and for androgen receptor 
stimulation. BMC Bioinformatics 8, 14 
(2007).

10. Chaussabel D, Sher A: Mining microarray 
expression data by literature profiling. 
Genome Biol. 3(10), 
research0055.1–research0055.16 (2002).

11. Chagoyen M, Carmona-Saez P, Shatkay H, 
Carazo JM, Pascual-Montano A: 
Discovering semantic features in the 
literature: a foundation for building 
functional associations. BMC Bioinformatics 
7, 41 (2006).

12. Kuffner R, Fundel K, Zimmer R: Expert 
knowledge without the expert: integrated 
analysis of gene expression and literature to 
Pharmacogenomics (2007)  8(11) future science groupfuture science group



Literature-based compound profiling: application to toxicogenomics – RESEARCH REPORT
derive active functional contexts. 
Bioinformatics 21(Suppl. 2), ii259–ii267 
(2005).

13. Glenisson P, Antal P, Mathys J, Moreau Y, 
De Moor B: Evaluation of the vector space 
representation in text-based gene 
clustering. Pac. Symp. Biocomput. 391–402 
(2003).

14. Rubinstein R, Simon I: MILANO – 
custom annotation of microarray results 
using automatic literature searches. BMC 
Bioinformatics 6, 12 (2005).

15. Blaschke C, Oliveros JC, Valencia A: 
Mining functional information associated 
with expression arrays. Funct. Integr. 
Genomics 1(4), 256–268 (2001).

16. Alako BT, Veldhoven A, van Baal S et al.: 
CoPub Mapper: mining MEDLINE based 
on search term co-publication. BMC 
Bioinformatics 6, 51 (2005).

17. Ding J, Berleant D, Nettleton D, Wurtele 
E: Mining MEDLINE: abstracts, 
sentences, or phrases? Pac. Symp. 
Biocomput. 7, 326–337 (2002).

18. Ellinger-Ziegelbauer H, Stuart B, Wahle 
B, Bomann W, Ahr HJ: Comparison of 
the expression profiles induced by 
genotoxic and nongenotoxic carcinogens 
in rat liver. Mutat. Res. 575(1–2), 61–84 
(2005).

•• Expression profiling of genotoxic and 
nongenotoxic carcinogens to identify 
characteristic sets of genes that represent 
defined biological pathways to predict a 
genotoxic or nongenotoxic carcinogenic 
potential of a compound.

19. Ellinger-Ziegelbauer H, Stuart B, Wahle 
B, Bomann W, Ahr HJ: Characteristic 
expression profiles induced by genotoxic 
carcinogens in rat liver. Toxicol. Sci. 77(1), 
19–34 (2004).

• Expression profiling of genotoxic 
carcinogens to identify genes and 
pathways that are indicative of early 
events 
in tumorigenesis.

20. Jolly RA, Goldstein KM, Wei T et al.: 
Pooling samples within microarray 
studies: a comparative analysis of rat liver 
transcription response to prototypical 
toxicants. Physiol. Genomics 22(3), 
346–355 (2005).

• Discusses the expression profiles of three 
well-characterized peroxisome 
proliferators in rat liver.

21. Maglott D, Ostell J, Pruitt KD, Tatusova 
T: Entrez Gene: gene-centered 
information at NCBI. Nucleic Acids Res. 
35(Database issue), D26–D31 (2007).

22. Parkinson H, Kapushesky M, Shojatalab M 
et al.: ArrayExpress – a public database of 
microarray experiments and gene expression 
profiles. Nucleic Acids Res. 35(Database issue), 
D747–D750 (2007).

23. Shannon P, Markiel A, Ozier O et al.: 
Cytoscape: a software environment for 
integrated models of biomolecular interaction 
networks. Genome Res. 13(11), 2498–2504 
(2003).

24. Rusyn I, Peters JM, Cunningham ML: 
Modes of action and species-specific effects of 
di-(2-ethylhexyl)phthalate in the liver. Crit. 
Rev. Toxicol. 36(5), 459–479 (2006).

25. Gonzalez FJ, Peters JM, Cattley RC: 
Mechanism of action of the nongenotoxic 
peroxisome proliferators: role of the 
peroxisome proliferator-activator receptor α. 
J. Natl Cancer Inst. 90(22), 1702–1709 
(1998).

26. Brunnemann KD, Fink W, Moser F: Analysis 
of volatile N-nitrosamines in mainstream and 
sidestream smoke from cigarettes by GLC-
TEA. Oncology 37(4), 217–222 (1980).

27. Barrows LR: Methylation of DNA guanine 
via the 1-carbon pool in 
dimethylnitrosamine-treated rats. Mutat. Res. 
173(1), 73–79 (1986).

28. George J, Rao KR, Stern R, Chandrakasan G: 
Dimethylnitrosamine-induced liver injury in 
rats: the early deposition of collagen. 
Toxicology 156(2–3), 129–138 (2001).

29. Gombar CT, Zubroff J, Strahan GD, 
Magee PN: Measurement of 7-
methylguanine as an estimate of the amount 
of dimethylnitrosamine formed following 
administration of aminopyrine and nitrite to 
rats. Cancer Res. 43(11), 5077–5080 (1983).

30. Schook LB, Lockwood JF, Yang SD, 
Myers MJ: Dimethylnitrosamine (DMN)-
induced IL-1 beta, TNF-α, and IL-6 
inflammatory cytokine expression. Toxicol. 
Appl. Pharmacol. 116(1), 110–116 (1992).

31. Jin YL, Enzan H, Kuroda N et al.: Tissue 
remodeling following submassive 
hemorrhagic necrosis in rat livers induced by 
an intraperitoneal injection of 
dimethylnitrosamine. Virchows Arch. 442(1), 
39–47 (2003).

32. Jin YL, Enzan H, Kuroda N et al.: 
Vascularization in tissue remodeling after rat 
hepatic necrosis induced by 
dimethylnitrosamine. Med. Mol. Morphol. 
39(1), 33–43 (2006).

33. Sato M, Suzuki S, Senoo H: Hepatic stellate 
cells: unique characteristics in cell biology 
and phenotype. Cell Struct. Funct. 28(2), 
105–112 (2003).

34. Guyot C, Lepreux S, Combe C et al.: 
Hepatic fibrosis and cirrhosis: the 

(myo)fibroblastic cell subpopulations 
involved. Int. J. Biochem. Cell Biol. 38(2), 
135–151 (2006).

35. Noguchi S, Inukai T, Kuno T, Tanaka C: 
The suppression of olfactory bulbectomy-
induced muricide by antidepressants and 
antihistamines via histamine H1 receptor 
blocking. Physiol. Behav. 51(6), 1123–1127 
(1992).

36. Hamadeh HK, Knight BL, Haugen AC 
et al.: Methapyrilene toxicity: anchorage of 
pathologic observations to gene expression 
alterations. Toxicol. Pathol. 30(4), 470–482 
(2002).

37. Mirsalis JC: Genotoxicity, toxicity, and 
carcinogenicity of the antihistamine 
methapyrilene. Mutat. Res. 185(3), 309–317 
(1987).

38. Steinmetz KL, Tyson CK, Meierhenry EF, 
Spalding JW, Mirsalis JC: Examination of 
genotoxicity, toxicity and morphologic 
alterations in hepatocytes following in vivo 
or in vitro exposure to methapyrilene. 
Carcinogenesis 9(6), 959–963 (1988).

39. Casciano DA, Talaska G, Clive D: The 
potent hepatocarcinogen methapyrilene 
induces mutations in L5178Y mouse 
lymphoma cells in the apparent absence of 
DNA adduct formation. Mutat. Res. 263(2), 
127–132 (1991).

40. Ratra GS, Powell CJ, Park BK, Maggs JL, 
Cottrell S: Methapyrilene hepatotoxicity is 
associated with increased hepatic 
glutathione, the formation of glucuronide 
conjugates, and enterohepatic recirculation. 
Chem. Biol. Interact. 129(3), 279–295 
(2000).

41. Brennan LM, Creasia DA: The effects of 
methapyrilene hydrochloride on 
hepatocarcinogenicity and pentobarbital-
induced sleeping time in rats and mice. 
Toxicol. Appl. Pharmacol. 66(2), 252–258 
(1982).

42. Lijinsky W, Knutsen G, Reuber MD: Failure 
of methapyrilene to induce tumors in 
hamsters or guinea pigs. J. Toxicol. Environ. 
Health 12(4–6), 653–657 (1983).

43. Cunningham ML: Role of increased DNA 
replication in the carcinogenic risk of 
nonmutagenic chemical carcinogens. Mutat. 
Res. 365(1–3), 59–69 (1996).

44. Ratra GS, Morgan WA, Mullervy J, 
Powell CJ, Wright MC: Methapyrilene 
hepatotoxicity is associated with oxidative 
stress, mitochondrial disfunction and is 
prevented by the Ca2+ channel blocker 
verapamil. Toxicology 130(2–3), 79–93 
(1998).

45. Pastore A, Federici G, Bertini E, 
Piemonte F: Analysis of glutathione: 
1533future science groupfuture science group www.futuremedicine.com

Joseph George
Rectangle



RESEARCH REPORT – Frijters, Verhoeven, Alkema, van Schaik & Polman 
implication in redox and detoxification. 
Clin. Chim. Acta 333(1), 19–39 (2003).

46. Rost D, Konig J, Weiss G et al.: 
Expression and localization of the 
multidrug resistance proteins MRP2 and 
MRP3 in human gallbladder epithelia. 
Gastroenterology 121(5), 1203–1208 
(2001).

47. Schinkel AH: The physiological function of 
drug-transporting P-glycoproteins. Semin. 
Cancer Biol. 8(3), 161–170 (1997).

48. Cohen SM: Role of cell proliferation in 
regenerative and neoplastic disease. Toxicol. 
Lett. 82–83, 15–21 (1995).

49. Anderson ME: Glutathione: an overview of 
biosynthesis and modulation. Chem. Biol. 
Interact. 111–112, 1–14 (1998).

50. Kang YJ: Metallothionein redox cycle and 
function. Exp. Biol. Med. (Maywood) 231(9), 
1459–1467 (2006).

51. Peng L, Mundada L, Stomel JM et al.: 
Induction of heme oxygenase-1 expression 
inhibits platelet-dependent thrombosis. 
Antioxid. Redox Signal. 6(4), 729–735 (2004).

52. Lampe MA, Kammerer RC: Cytochrome 
P-450 dependent binding of methapyrilene to 
DNA in vitro. Carcinogenesis 8(10), 
1525–1529 (1987).

53. Lampe MA, Kammerer RC: Species 
differences in the metabolism and 
macromolecular binding of methapyrilene: a 
comparison of rat, mouse and hamster. 
Xenobiotica 20(12), 1269–1280 (1990).

54. Carvalho AC, Sharpe J, Rosenstock TR 
et al.: Bax affects intracellular Ca2+ stores 
and induces Ca2+ wave propagation. Cell 
Death Differ. 11(12), 1265–1276 (2004).

55. Gramantieri L, Chieco P, Giovannini C 
et al.: GADD45-α expression in cirrhosis 
and hepatocellular carcinoma: relationship 
with DNA repair and proliferation. Hum. 
Pathol. 36(11), 1154–1162 (2005).

Websites
101. CoPub 

http://services.nbic.nl/cgi-
bin/copub/CoPub.pl

102. National Center for Biotechnology 
Information (NCBI) Entrez Gene 
www.ncbi.nih.gov/entrez/query.fcgi?db=gene

103. The Gene Ontology (GO) project  
www.geneontology.org

104. KEGG: Kyoto Encyclopedia of Genes and 
Genomes
www.genome.jp/kegg

105. Encyclopedia of Human Genes and 
Metabolism
http://humancyc.org

106. Reactome 
www.genomeknowledge.org

107. Medline/PubMed Baseline Distribution  
www.nlm.nih.gov/bsd/licensee/2007_stats/b
aseline_doc.html

108. ArrayExpress 
www.ebi.ac.uk/arrayexpress

109. Affymetrix
www.affymetrix.com

110. The R Project for Statistical Computing  
www.r-project.org

111. Cytoscape: Analyzing and Visualizing 
Network Data
www.cytoscape.org
1534 Pharmacogenomics (2007)  8(11) future science groupfuture science group




