Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in rats with liver cirrhosis and diabetes mellitus, alone and in combination

C.Y. Ahn¹,², S.K. Bae³, S.H. Bae¹, H.E. Kang³, S.H. Kim⁴, M.G. Lee³, and W.G. Shin¹

¹College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea, ²Center for Drug Development Assistance, National Institute of Food and Drug Safety Evaluation, Seoul, South Korea, ³College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea, and ⁴College of Dentistry and Research Institute of Oral Science, Kangnung-Wonju National University, Gangnun, South Korea

Abstract

1. Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in humans and rats with liver cirrhosis (LC) and diabetes mellitus (DM), alone and in combination (LCD) did not seem to be reported.

2. Sildenafil was administered intravenously (10 mg/kg) and orally (20 mg/kg) to control, LC, DM, and LCD rats. Expression of intestinal CYP isozymes in those rats was also measured.

3. In LC, DM, and LCD rats, the areas under the curve (AUCs) of intravenous sildenafil were significantly greater (by 195%, 54.2%, and 127%, respectively) than controls. In LC and LCD rats, AUCs of oral sildenafil were significantly greater (3010% and 2030%, respectively) than controls.

4. In LC, DM, and LCD rats, significantly greater AUCs of intravenous sildenafil were due to the slower hepatic extraction of sildenafil (because of decrease in the protein expression of hepatic CYP2C11 and 3A subfamily in LC and LCD rats, and CYP2C11 in DM rats), and greater magnitude of increase in AUCs of oral sildenafil than those after the intravenous administration could be mainly due to the decrease in the intestinal extraction of sildenafil (because of decrease in the protein expression of intestinal CYP2C11 in LC and LCD rats).

Keywords: Sildenafil and N-desmethylsildenafil, pharmacokinetics, rats with liver cirrhosis and/or diabetes mellitus, hepatic and intestinal CYP2C11 and 3A subfamily

Introduction

Sildenafil (a weak basic compound with a pKₐ of 6.5; Figure 1) is an inhibitor of the cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5) found in the human corpus cavernosum. Sildenafil citrate (Viagra®) is an effective oral agent for the treatment of male erectile dysfunction. The following pharmacokinetics of sildenafil has been reported in male Sprague-Dawley rats (Shin et al. 2006). The total areas under the plasma concentration-time curve (AUCs) of intravenous sildenafil (10, 30, and 50 mg/kg) from time 0 to infinity were dose-proportional. However, its oral AUCs increased more than proportional to the dose increases (10, 30, and 100 mg/kg). After the intravenous, oral, intraportal, intragastric, or intraduodenal administration of sildenafil (30 mg/kg), the unabsorbed fraction up to 24 h

Figure 1. Chemical structure of sildenafil.
The association between liver disease and DM is well known (Vidal et al. 1994; Kwon 2003; Moscatiello et al. 2007); the overall prevalence of DM in patients with LC is significantly higher than that expected. The erectile dysfunction has been reported in patients with LC (Toda et al. 2005) and DM (Musicki and Burnett 2007). The pharmacokinetic studies of chlorzoxazone (Ahn et al. 2008) and oltipraz (Ahn et al. 2009) in rats with LC and DM, alone and in combination (LCD) have been reported. However, no pharmacokinetic studies on sildenafil and N-desmethylsildenafil in patients and rats have yet been reported except in patients with LC (Muirhead et al. 2002). Thus, in the present study, sildenafil was selected and the pharmacokinetics of sildenafil and N-desmethylsildenafil were evaluated after the intravenous and oral administration of sildenafil to LC, DM, and LCD rats. The protein expression of intestinal CYP isozymes using western blot analysis was also examined.

Materials and methods

Chemicals

Sildenafil citrate, N-desmethylsildenafil (purity; 98%), and DA-8159 (purity; 99.5%) [Udenafil; Zydena®; internal standard for the liquid chromatography–tandem mass spectrometry (LC/MS/MS) analysis of sildenafil and N-desmethylsildenafil] were products from APIN Chemical (Oxfordshire, UK), Toronto Research Chemicals (North York, ON, Canada), and Dong-A Pharmaceutical Company, Ltd. (Yongin, South Korea), respectively. The reduced form of β-nicotinamide adenine dinucleotide phosphate (NADPH; as a tetrasodium salt), ethylenediaminetetraacetic acid (EDTA; as a disodium salt), streptozotocin, tris(hydroxymethyl)aminomethane (Tris®)-buffer, β-actin, primary monoclonal antibody for β-actin, and Kodak X-OMAT film were all purchased from Sigma-Aldrich Corporation (St. Louis, MO). Monoclonal anti-rat CYP1A1/2, 2B1/2, 2C11, CYP2D subfamily, 2E1, and 3A subfamily antibodies were products from Oxford Biomedical Research (Metamora, MI) and Detroit R&D (Detroit, MI). Horseradish peroxidase-conjugated anti-rabbit and anti-mouse secondary antibodies, and enhanced chemiluminescence reagents were purchased from Bio-Rad Laboratories (Hercules, CA) and Amersham Life Science Inc. (Piscataway, NJ), respectively. N-Dimethylnitrosamine was a product from Tokyo Kasei Kogyo Company (Tokyo, Japan). Other chemicals were of reagent or high-performance liquid chromatographic (HPLC) grade.

Animals

The protocols for the animal study were approved by the Animal Care and Use Committee of College of Pharmacy, Seoul National University, Seoul, South Korea. Male Sprague-Dawley rats (4–6 weeks old, weighing 160–210 g) were purchased from Charles River Company Korea (Orient, Seoul, South Korea). The procedures used for
housing and handling the rats were similar to the reported methods (Bae et al. 2004, 2009; Ahn et al. 2008, 2009).

Induction of LC

Freshly prepared N-dimethylnitrosamine (diluted in 0.9% NaCl-injectable solution) was injected intraperitoneally at a dose of 0.01 mg (1 mL)/kg on three consecutive days per week for 4 weeks (Ohara and Kusano 2002; Bae et al. 2004; Ahn et al. 2008, 2009). On Day 29, one dose (1 mL/kg) of citrate buffer (pH 4.5) was administered via the tail vein. On Day 36, the rats were treated with sildenafil citrate. Laboratory rats with N-dimethylnitrosamine-induced LC have clinical features similar to those of human with LC, such as increasing mortality, destruction of hepatic parenchymal cell, formation of connective tissue, and regeneration of nodule (Kang et al. 2002). Liver cirrhosis in LC rats was evident by liver histological analysis (Ohara and Kusano 2002). It has been reported that N-dimethylnitrosamine-induced LC in rats was reproducible (Jézéquel et al. 1987; Kang et al. 2002).

Induction of DM

A 0.9% NaCl-injectable solution was injected intraperitoneally (1 mL/kg) on three consecutive days per week for 4 weeks. On Day 29, one dose [45 mg (1 mL)/kg] of freshly prepared streptozotocin (dissolved in citrate buffer (pH 4.5)] was administered via the tail vein (Kim et al. 2005; Ahn et al. 2008, 2009). On Day 36, the rats were treated with sildenafil citrate. Diabetes mellitus in DM rats was evident by higher blood glucose level, greater 24-h urine output, and decrease in body weight gain (Ahn et al. 2008).

Induction of LCD

LC was induced by intraperitoneal injection of N-dimethylnitrosamine as described above. Then, on Day 29, DM was induced by injection of streptozotocin via the tail vein as described earlier. On Day 36, the rats were treated with sildenafil citrate. The presence of LC and DM in LCD rats was evident based on the blood chemistry data as well as liver histological analysis (Ahn et al. 2008).

Control rats

Rats were injected intraperitoneally with 0.9% NaCl-injectable solution (1 mL/kg) on three consecutive days per week for 4 weeks. On Day 29, one dose (1 mL/kg) of the citrate buffer (pH 4.5) was administered via the tail vein. On Day 36, the rats were treated with sildenafil citrate.

During the pretreatment, food and water were available *ad libitum* to all rats. Immediately before the experiment, blood glucose levels in all rats were measured using the Medisense Optium kit (Abbott Laboratories, Bedford, MA) and rats with blood glucose levels higher than 250 mg/dL were chosen as being diabetic (DM and LCD rats).

Preparation of hepatic microsomes

The procedures used for preparation of hepatic microsomes form control, LC, DM, and LCD rats (n = 4–6, each) were similar to the reported methods (Ahn et al. 2008, 2009; Choi et al. 2008). Then, the hepatic microsomes were stored at −70°C (Revco ULT 1490 D-N-S; Western Mednics, Asheville, NC) until use. Protein contents in hepatic microsomes were measured using a reported method (Bradford 1976).

Measurement of V_{max}, K_m, and CL_{int}$ for the disappearance of sildenafil in hepatic microsomes

The procedures used were similar to the reported methods (Ahn et al. 2008, 2009). The V_{max} (maximum velocity) and K_m (the apparent Michaelis–Menten constant; the concentration at which the rate is one-half of the V_{max}) for the disappearance of sildenafil in control, LC, DM, and LCD rats (n = 5–6, each) were determined after incubating the above microsomes (equivalent to 0.2 mg protein), 5 μL of methanol containing final sildenafil base (the same solution used in the intravenous study) concentrations of 1, 2, 4, 10, 20, 40, 100, and 200 μM, and 50 μL of 0.1 M phosphate buffer (pH 7.4) containing 1 mM NADPH. The volume was adjusted to 0.5 mL by adding 0.1 M phosphate buffer (pH 7.4), and the components were incubated at 37°C using a thermomixer (Eppendorf, Hamburg, Germany) at a rate of 50 oscillations/min (opm). Incubation times were 1, 5, 15, 30, and 60 min, respectively, in the preliminary study. All of the above microsomal incubation conditions were within the linear range of the reaction rate. The reaction was terminated by addition of 1 mL of acetonitrile after 5-min incubation. The kinetic constants (K_m and V_{max}) for the disappearance of sildenafil were calculated using a nonlinear regression method (Duggleby 1995). The intrinsic clearance (CL_{int}) for the disappearance of sildenafil was calculated by dividing the V_{max} by K_m.

Immunoblot analysis of intestinal CYP1A1/2, 2B1/2, 2C11, 2D subfamily, 2E1, and 3A subfamily

The procedures used for preparation of intestinal microsomes and immunoblot analysis of intestinal CYP isozymes were similar to a reported method (Lee and Lee 2008; Ahn et al. 2009). Intestinal microsomes were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 7.5% gel (10 μg protein per lane; n = 3, each). Proteins were transferred to a nitrocellulose membrane (Pall Corporation, Ann Arbor, MI) that was then blocked for 2 h in the Tris® buffered saline containing 0.1% (v/v) Tween 20 (TBS-T). For immunodetection, blots were incubated overnight at 4°C with anti-rat CYP isozyme antibodies (diluted 1:10,000 in TBS-T containing 5% bovine serum albumin), followed by incubation for 2 h at room temperature with a secondary antibody conjugated to horseradish peroxidase (diluted 1:10,000 in TBS-T containing 5% milk powder). The protein expression of the CYP isozymes were detected by enhanced chemiluminescence on Kodak
Xenobiotica Downloaded from informahealthcare.com by Nyu Medical Center on 08/23/12
of sildenafil spiked into the plasma compartment was side (Øie and Guentert 1982). An initial concentration compartments, sildenafil was spiked into the plasma
rium time of sildenafil between “the buffer” and plasma
Industries Inc., Los Angeles, CA). To reduce equilib-
(molecular weight cutoff 12–14 kDa; Spectrum Medical
Scientific, Fair Lawn, NJ) using a Spectra/Por 4 membrane
3% (w/v) dextran (“the buffer”) to minimize volume shift
isotonic Sørensen phosphate buffer (pH 7.4) containing
One millitre of plasma was dialyzed against 1 mL of
measured using equilibrium dialysis (Shim et al. 2000).
Measurement of rat plasma protein binding of
sildenafil using equilibrium dialysis
Protein binding values of sildenafil to fresh plasma
from control, LC, DM, and LCD rats (n = 4, each) were
measured using equilibrium dialysis (Shim et al. 2000).
One millilitre of plasma was dialyzed against 1 mL of
isotonic Sørensen phosphate buffer (pH 7.4) containing
3% (w/v) dextran (“the buffer”) to minimize volume shift
(Boudinot and Jusko 1984) in a 1-mL dialysis cell (Fisher
Scientific, Fair Lawn, NJ) using a Spectra/Per 4 membrane
(molecular weight cutoff 12–14 kDa; Spectrum Medical
Industries Inc., Los Angeles, CA). To reduce equilib-
rium time of sildenafil between “the buffer” and plasma
compartments, sildenafil was spiked into the plasma
side (Oie and Guentert 1982). An initial concentration of sildenafil spiked into the plasma compartment was
5 μg/mL. After 24-h incubation, two 50 μL were collected
from each compartment and stored at −70°C until used
for the LC/MS/MS analysis of sildenafil.

LC/MS/MS analysis of sildenafil and N-desmethylsildenafil
Concentrations of sildenafil and N-desmethylsildenafil were determined using a LC/MS/MS method (Bae et al. 2009). In brief, to 50 μL of a sample, 200 μL of acetonitrile containing 250 ng/mL of DA-8159 (internal standard) was added. After vortex-mixing and centrifugation (9000 g for 10 min), the supernatant was transferred to another Eppendorf tube and a 6 μL was directly injected onto a reversed-phase HPLC column (Luna C18, 50 mm, l × 2.0 mm, i.d.; particle size, 3 μm; Phenomenex, Torrance, CA). The mobile phase, 10 mM ammonium acetate (pH 5.2):acetonitrile (25:75, v/v), was run at a flow rate of 0.2 mL/min using an Agilent 1200 series HPLC system (Wilmington, DE). The column and autosampler tem-
peratures were maintained at 40°C and 4°C, respectively.
A LC/MS/MS analysis was performed using a PE SCIEX API4000 LC/MS/MS system (Applied Biosystems, Foster
City, CA), equipped with an electrospray ionization inter-
face used to generate positive ions, [M+H]+. The optimized ion
spray voltage and temperature were set at 5500 V and
500°C, respectively. The typical ion source parameters,
viz., declustering potential, collision energy, entrance
potential, and collision cell exit potential were 60, 35, 10,
and 14 V, respectively. Nitrogen gas was used for the nebu-
lizer (NEB) gas, curtain (CUR) gas, and collision-activated
dissociation (CAD) gas. Quantification was performed
by multiple reactions monitoring of the protonated pre-
cursor ion and the related product ion for sildenafil and
N-desmethylsildenafil, using the internal standard method
with peak area ratios and a weighing factor of 1/283. The
mass transitions used for sildenafil, N-desmethylsildenafil,
and internal standard were m/z 475.3 → 100.1, 460.9 →
283.2, and 517.2 → 283.1, respectively, with a dwell time
of 150 msec per transition. Quadrupoles Q1 and Q3 were
set on unit resolution. The analytical data were processed
by analyst software (version 1.4.1; Applied Biosystems).
The retention times of sildenafil, N-desmethylsildenafil,
and DA-8159 (internal standard) were approximately 1.2,
0.97, and 0.93 min, respectively. This assay was linear over
concentration ranges from 5 to 1000 ng/mL with a lower
limit of quantification of 5 ng/mL for both sildenafil and
N-desmethylsildenafil. The coefficient of variation for the
assay precision was less than 14.7%, and the accuracy was
greater than 94.2%.

Pharmacokinetic analysis
Standard methods (Gibaldi and Perrier 1982) were used to
calculate the following pharmacokinetic parameters using
a non-compartmental analysis (WinNonlin®; Pharsight
Corporation, Mountain View, CA): the AUC (Chiou 1978),
time-averaged total body and renal clearances (CL and
CLR, respectively), terminal half-life (t1/2), mean residence
time (MRT), apparent volume of distribution at steady
state (V_{max}), and F (Kim et al. 1993). The peak plasma concentration (C_{max}) and time to reach C_{max} (T_{max}) were directly read from the experimental data.

Statistical analysis
A P-value <0.05 was considered to be statistically significant using a Duncan’s multiple range test of Statistical Package for the Social Sciences (SPSS) posteriori analysis of variance (ANOVA) among the four means for the unpaired data. All data are expressed as mean ± standard deviation (SD) except median (range) for T_{max}.

Results

V_{max}, K_{m}, and CL_{int} for the disappearance of sildenafil in hepatic microsomes

The V_{max}, K_{m}, and CL_{int} for the disappearance of sildenafil in hepatic microsomes from four groups of rats are listed in Table 1. In LC, DM, and LCD rats, the V_{max}s were significantly lower (by 93.0, 65.3, and 94.1%, respectively) than controls. This suggests that in LC, DM, and LCD rats, the maximum velocity for the disappearance (primarily metabolism) of sildenafil was slower than controls. In LC, DM, and LCD rats, the K_{m}s were significantly lower (by 82.5, 42.7, and 92.4%, respectively) than controls. This suggests that in LC, DM, and LCD rats, the affinity of enzyme(s) for the sildenafil increased compared with controls. Since the total liver weight and total liver proteins were different among four groups of rats, the CL_{int}s were calculated based on the mL/min/whole liver; the values in LC (by 71.1%; $P<0.05$), DM (by 34.5%; $P=0.134$), and LCD (by 35.5%; $P=0.193$) rats were slower than controls. This suggests that in LC, DM, and LCD rats, formation of metabolites of sildenafil could be decreased compared with controls.

Protein expression of intestinal CYP1A1/2, 2B1/2, 2C11, 2D subfamily, 2E1, and 3A subfamily

The protein expression of intestinal CYP1A1/2, 2B1/2, 2C11, 2D subfamily, 2E1, and 3A subfamily in control, DM, LC, and LCD rats is shown in Figure 2. In LC rats, the protein expression of CYP2B1/2, 2C11, 2D6, 2E1, and 3A subfamily significantly decreased (by 89.4%, 94.9%, 86.3%, 67.3%, and 52.4%, respectively), but CYP1A1/2 was not altered compared with controls. In DM rats, CYP1A1/2 was increased (by 1380%), 2C11 and 2D subfamily decreased (by 91.9% and 14.5%, respectively), but others were not altered compared with controls. In LCD rats, CYP1A1/2 increased (by 1510%), 2C11 decreased (by 94.6%), but others were not altered compared with controls.

Rat plasma protein binding of sildenafil

The binding values of sildenafil to fresh plasma from four groups of rats were 78.9 ± 5.89% (control rats), 72.7 ± 4.13% (LC rats), 63.7 ± 11.9% (DM rats), and 70.5 ± 5.76% (LCD rats); the value in DM rats was significantly smaller (by 19.3%) than controls.

It has been reported that the binding values of sildenafil in 4% human serum albumin, similar to the ratio of albumin in rat plasma (Mitruka and Rawnsley 1981), were constant, 95.0%, at sildenafil concentrations ranging from 0.01 to 10 μg/mL (Walker et al. 1999). Thus, a sildenafil concentration of 5 μg/mL was used in this plasma protein binding studies.

Pharmacokinetics of sildenafil and N-desmethylsildenafil after single intravenous administration of sildenafil

After the intravenous administration of sildenafil to control, LC, DM, and LCD rats, the mean arterial plasma concentration–time profiles of sildenafil and N-desmethylsildenafil are shown in Figure 3A and 3B, respectively. The relevant pharmacokinetic parameters are listed in Table 2. In LC rats, the AUC, CL, MRT, and V_{us} of sildenafil were significantly greater (by 195%), slower (by 64.4%), longer (by 345%), and larger (by 44.8%), respectively; AUC, C_{max}, and T_{max} of N-desmethylsildenafil were significantly smaller (by 500%), and the metabolite ratio (AUC$_{\text{N-desmethylsildenafil/AUC_sildenafil}}$) was significantly smaller (by 78.1%) than controls. In DM rats, LC, and LCD rats were significantly different ($P<0.05$) from other three groups.

Table 1. V_{max}, K_{m}, and CL_{int} for the disappearance of sildenafil in hepatic microsomes from control, liver cirrhosis (LC), diabetes mellitus (DM), and liver cirrhosis with diabetes mellitus (LCD) rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control ($n=6$)</th>
<th>LC ($n=5$)</th>
<th>DM ($n=4$)</th>
<th>LCD ($n=5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{max} (nmol/min/mg protein)a</td>
<td>13.4 ± 6.95</td>
<td>0.933 ± 0.569</td>
<td>4.65 ± 3.01</td>
<td>0.792 ± 0.410</td>
</tr>
<tr>
<td>K_{m} (μM)b</td>
<td>52.9 ± 22.0</td>
<td>9.28 ± 5.60</td>
<td>30.3 ± 13.9</td>
<td>4.00 ± 1.85</td>
</tr>
<tr>
<td>CL_{int} (mL/min/mg protein)c</td>
<td>0.254 ± 0.0868</td>
<td>0.108 ± 0.0707</td>
<td>0.144 ± 0.0515</td>
<td>0.235 ± 0.130</td>
</tr>
<tr>
<td>CL_{int} (mL/min/whole liver)d</td>
<td>22.0 ± 8.35</td>
<td>6.35 ± 5.27</td>
<td>14.4 ± 4.37</td>
<td>14.2 ± 8.92</td>
</tr>
<tr>
<td>Total protein (mg/whole liver)e</td>
<td>86.1 ± 9.45</td>
<td>62.8 ± 10.8</td>
<td>103 ± 15.9</td>
<td>62.9 ± 11.3</td>
</tr>
<tr>
<td>Liver weight (% of body weight)f</td>
<td>3.48 ± 0.396</td>
<td>2.68 ± 0.389</td>
<td>3.92 ± 0.274</td>
<td>3.14 ± 0.237</td>
</tr>
</tbody>
</table>

Notes: Data are the mean ± standard deviation (SD).

CL_{int}: Intrinsic clearance; K_{m}: apparent Michaelis–Menten constant; LC: liver cirrhosis; LCD: liver cirrhosis with diabetes mellitus; V_{max}: maximum velocity.

aControl group was significantly different ($P<0.05$) from other three groups.

bControl group, DM group, and LC and LCD groups were significantly different ($P<0.05$).

cControl group was significantly different ($P<0.05$) from LC group.

dControl and DM groups were significantly different ($P<0.05$) from LC and LCD groups.

eControl and DM groups were significantly different ($P<0.05$) from LC group, and DM group was significantly different ($P<0.05$) from LCD group.
rats, the AUC and CL of sildenafil were significantly greater (by 54.2%) and slower (by 34.8%), respectively; \(C_{\text{max}} \) of N-desmethylsildenafil was significantly lower (by 35.5%); and metabolite ratio was significantly smaller (by 42.9%) than controls. In LCD rats, the AUC, CL, MRT, and \(V_{ss} \) of sildenafil were significantly greater (by 127%), slower (by 54.9%), longer (by 239%), and larger (by 51.9%), respectively; AUC, \(C_{\text{max}} \), and \(T_{\text{max}} \) of N-desmethylsildenafil were significantly smaller (by 51.5%), lower (by 73.1%), and longer (by 300%), respectively; and metabolite ratio was significantly smaller (by 77.1%) than controls (Table 2). The \(A_{0-24h} \) and \(GI_{24h} \) (expressed in terms of the percentage of the intravenous sildenafil dose) of both sildenafil and N-desmethylsildenafil were below the detection limit in all rats studied. Note that in LC, DM, and LCD rats, body weight gain decreased (by 56.3, 22.6, and 55.8%, respectively) compared with controls as reported from other studies (Ahn et al. 2008, 2009).

Pharmacokinetics of sildenafil and N-desmethylsildenafil after single oral administration of sildenafil

After the oral administration of sildenafil to control, LC, DM, and LCD rats, the mean arterial plasma

![immunoblotting.png](image-url)
concentration–time profiles of sildenafil and N-desmethylsildenafil are shown in Figure 4A and 4B, respectively. The relevant pharmacokinetic parameters are listed in Table 3. In LC rats, the AUC, terminal $t_{1/2}$, and C_{max} of sildenafil were significantly greater (by 3010%), longer (by 33.0%), and higher (by 833%), respectively; AUC, C_{max}, and T_{max} of N-desmethylsildenafil were significantly smaller (by 61.5%), lower (by 84.6%), and longer (by 200%), respectively; and metabolite ratio was significantly smaller (by 97.1%) than controls. After the oral administration of 50-mg sildenafil to male patients with biopsy-proven LC, the AUC and C_{max} of sildenafil were also greater (by 85.0%) and higher (by 47.1%), respectively, but AUC of N-desmethylsildenafil was greater (by 155%) than control subjects (Murihead et al. 2002). In DM rats, the C_{max} of N-desmethylsildenafil was significantly lower (by 23.9%); and metabolite ratio was significantly smaller (by 63.6%) than controls. In LCD rats, the AUC, C_{max}, and T_{max} of sildenafil were significantly greater (by 2030%), higher (by 696%), and longer (by 50%), respectively; AUC, C_{max}, and T_{max} of N-desmethylsildenafil were significantly smaller (by 61.3%), lower (by 83.2%), and longer (by 400%), respectively; and metabolite ratio was significantly smaller (by 97.2%) than the controls. In LC, DM, and LCD rats, the F values were greater (by 953%, 101%, and 839%, respectively) than controls. The $Ae_{0–24\,h}$ and $GI_{24\,h}$ of sildenafil were almost negligible (<2.56% of the oral dose of sildenafil) and those of N-desmethylsildenafil (expressed in terms of the percentage of the oral dose of sildenafil) were below the detection limit for all rats studied.
Discussion

The hepatic CL\textsubscript{\text{ext}} for the disappearance of sildenafil based on the mL/min/whole liver were slower than controls in the order of DM, LCD, and LC rats (Table 1). This could have possibly been due to the differences in the magnitude of changes in the hepatic CYP isozymes compared with controls: in LC rats, the protein expression of hepatic CYP2C11 and 3A subfamily significantly decreased (by 83.1% and 75.8%, respectively); in LCD rats, they were also significantly decreased (by 32.8% and 52.9%, respectively), but the magnitude was smaller than that in LC rats (Ahn et al. 2009). However, in DM rats, the CYP2C11 and 3A subfamily were significantly decreased (by 28.8%) and increased (by 23.0%), respectively (Ahn et al. 2009).

Streptozotocin has “direct” (streptozotocin \textit{per se}) effects on the pharmacokinetic parameters of drugs due to its hepatotoxicity (Ioannides 1996). Approaches have been proposed for ensuring that observed pharmacokinetic effects in DMIS rats are due to the “indirect” (changes in CYP isozymes due to diabetes-related changes) effect of streptozotocin and not streptozotocin \textit{per se} (Ioannides 1996). Considering the very short $t_{1/2}$ of streptozotocin (about 15 min), it is unlikely that its “direct” effects could be sustained for 7 days after administration of streptozotocin. Streptozotocin had no effect on the metabolism of model substrates \textit{in vitro} (Ackerman and Leibman 1977), and analogues of streptozotocin, devoid of diabetogenic activity, failed to influence the metabolism of various substrates (Reinke et al. 1978). The above data suggest that the effect of streptozotocin on Day 7 occurred through its “indirect,” and not “direct,” mechanism. Metabolic $t_{1/2}$ of N-dimethylnitrosamine was also short; <10 min in rodents and about 20 min in non-human primates (George et al. 2001). Therefore, it is also unlikely that its “direct” effects could be sustained for more than a week after administration of N-dimethylnitrosamine. However, the acute toxic effects of streptozotocin and N-dimethylnitrosamine could not be totally ruled out.

The contribution of GI (including biliary) excretion of unchanged sildenafil to its CL did not seem to be considerable; the GI$\frac{1}{2}$ values of sildenafil were below the detection limit (Table 2). Sildenafil was stable in buffer solutions having pH of 3, 7, and 11 up to 12-h incubation (>98% of the spiked amounts of sildenafil were recovered) (Wang et al. 2008). Moreover, the 24-h biliary excretion of sildenafil after its intravenous administration (20 mg/kg) to three rats with bile duct cannulation was only 0.142 ± 0.0321% of the dose in the present study. The $\text{Ae}_{24\text{h}}$ was also below the detection limit for all rats studied (Table 2). The above data suggest that intravenous sildenafil was almost completely metabolized and the CLs of sildenafil listed in Table 2 could represent its metabolic clearances.

Table 2. Pharmacokinetic parameters of sildenafil and N-desmethylsildenafil after the intravenous administration of sildenafil at a dose of 10 mg/kg to control, liver cirrhosis (LC), diabetes mellitus (DM), and liver cirrhosis with diabetes mellitus (LCD) rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n=9)</th>
<th>LC (n=10)</th>
<th>DM (n=9)</th>
<th>LCD (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>178 ± 9.72</td>
<td>186 ± 14.5</td>
<td>179 ± 12.4</td>
<td>183 ± 14.4</td>
</tr>
<tr>
<td>Final body weight (g)a</td>
<td>377 ± 11.5</td>
<td>273 ± 16.2</td>
<td>333 ± 21.4</td>
<td>271 ± 16.6</td>
</tr>
<tr>
<td>Sildenafil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC (μg min/mL)d</td>
<td>577 ± 34.9</td>
<td>1700 ± 399</td>
<td>890 ± 92.8</td>
<td>1310 ± 229</td>
</tr>
<tr>
<td>CL (mL/min/kg)b</td>
<td>34.8 ± 2.12</td>
<td>12.4 ± 3.37</td>
<td>22.7 ± 2.47</td>
<td>15.7 ± 2.58</td>
</tr>
<tr>
<td>Terminal $t_{1/2}$ (min)</td>
<td>49.1 ± 5.74</td>
<td>91.6 ± 23.6</td>
<td>49.8 ± 11.6</td>
<td>69.6 ± 30.8</td>
</tr>
<tr>
<td>MRT (min)c</td>
<td>17.4 ± 2.87</td>
<td>77.5 ± 33.2</td>
<td>22.9 ± 3.66</td>
<td>58.9 ± 7.48</td>
</tr>
<tr>
<td>V_s (mL/kg)b</td>
<td>603 ± 94.6</td>
<td>873 ± 218</td>
<td>515 ± 64.7</td>
<td>916 ± 140</td>
</tr>
<tr>
<td>$\text{Ae}_{24\text{h}}$ (% of sildenafil dose) a</td>
<td>BDe</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>GI$\frac{1}{2}$ (% of sildenafil dose) a</td>
<td>BDe</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>N-Desmethylsildenafil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC (μg min/mL)d</td>
<td>233 ± 15.0</td>
<td>142 ± 87.8</td>
<td>206 ± 47.6</td>
<td>113 ± 45.9</td>
</tr>
<tr>
<td>Terminal $t_{1/2}$ (min)</td>
<td>95.7 ± 16.6</td>
<td>186 ± 77.9</td>
<td>113 ± 13.8</td>
<td>145 ± 79.1</td>
</tr>
<tr>
<td>C_{max} (μg/mL)b</td>
<td>1.86 ± 0.292</td>
<td>0.471 ± 0.326</td>
<td>1.20 ± 0.262</td>
<td>0.500 ± 0.159</td>
</tr>
<tr>
<td>T_{max} (min)c</td>
<td>15 (5–15)</td>
<td>90 (15–120)</td>
<td>15 (5–30)</td>
<td>60 (5–60)</td>
</tr>
<tr>
<td>$\text{Ae}_{24\text{h}}$ (% of sildenafil dose) a</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>GI$\frac{1}{2}$ (% of sildenafil dose) a</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>AUC$\text{N-desmethylsildenafil}/AUC\text{sildenafil}$ (%)a</td>
<td>40.6 ± 3.92</td>
<td>8.91 ± 6.61</td>
<td>23.2 ± 4.93</td>
<td>9.29 ± 3.96</td>
</tr>
</tbody>
</table>

Notes: Data are the mean ± standard deviation (SD) except for T_{max}, which is median (range).

$\text{Ae}_{24\text{h}}$: Percentage of the dose excreted in the 24-h urine; AUC, area under the plasma concentration–time curve; C_{max}, peak plasma concentration; DM, diabetes mellitus; GI$\frac{1}{2}$, percentage of the dose recovered from the gastrointestinal tract (including its contents and faeces) at 24 h; LC, liver cirrhosis; LCD, liver cirrhosis with diabetes mellitus; MRT, mean residence time; T_{max}, time to reach C_{max}; V_s, volume of distribution at steady state.

aControl group, DM group, and LC and LCD groups were significantly different ($P<0.05$).

bEach group was significantly different ($P<0.05$).

cControl and DM groups, LCD group, and LC group were significantly different ($P<0.05$).

dControl and DM groups were significantly different ($P<0.05$) from LC and LCD groups.

eBelow the detection limit.

© 2011 Informa UK, Ltd.
In LC, DM, and LCD rats, the AUCs of intravenous sildenafil were significantly greater than controls, possibly as a result of the significantly slower CLs of sildenafil than controls (Table 2). Because sildenafil is a drug with an intermediate hepatic extraction ratio [hepatic first-pass extraction ratio of 0.49 after absorption into the portal vein (Shin et al. 2006)], its hepatic clearance depends on the in vitro hepatic CLint for the disappearance of sildenafil, the free (unbound to plasma proteins) fraction of sildenafil in the plasma, and the hepatic blood flow rate in rats (Wilkinson and Shand 1975). The significantly slower CL of sildenafil in LC rats (Table 2) could have been supported by the significantly slower hepatic CLint (mL/min/whole liver) for the disappearance of sildenafil (Table 1) and slower hepatic blood flow rate than controls, because the free fraction of sildenafil in the plasma was comparable with controls. Goetting et al. (1986) reported that the hepatic blood flow rate was slower in rats with LC induced by carbon tetrachloride. In LC rats, the slower hepatic CLint (Table 1) could have been due to the decrease in the protein expression of both hepatic CYP2C11 and 3A subfamily compared with controls (Ahn et al. 2009). In DM rats, the slower CL of sildenafil (Table 2) could have been due to the significantly slower CLint (mL/min/whole liver) (Table 1) because the free fraction of sildenafil in the plasma was significantly greater and the hepatic blood flow rate was faster (Sato et al. 1991) than controls. In DM rats, the slower CLint could be due to the decrease in the protein expression of CYP2C11 because CYP3A subfamily increased in DM rats compared with controls (Ahn et al. 2009). In LCD rat, the significantly slow CL of sildenafil (Table 2) could at least partly have been due to the slower hepatic CLint (mL/min/whole liver) (Table 1) because the free fraction of sildenafil in the plasma was comparable with controls. In LCD rats, the hepatic blood flow rate changes did not seem to be reported. In LCD rats, the slower CLint (Table 1) could have been due to the decrease in the protein expression of both CYP2C11 and 3A subfamily compared with controls (Ahn et al. 2009).

In LC and LCD rats, the Vss of intravenous sildenafil were significantly larger than controls (by 44.8% and

Table 3. Pharmacokinetic parameters of sildenafil and N-desmethyilsildenafil after the oral administration of sildenafil at a dose of 20 mg/kg to control, liver cirrhosis (LC), diabetes mellitus (DM), and liver cirrhosis with diabetes mellitus (LCD) rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n=8)</th>
<th>LC (n=9)</th>
<th>DM (n=10)</th>
<th>LCD (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>169 ± 9.04</td>
<td>167 ± 7.55</td>
<td>164 ± 11.5</td>
<td>165 ± 7.45</td>
</tr>
<tr>
<td>Final body weight (g)a</td>
<td>328 ± 12.3</td>
<td>279 ± 17.2</td>
<td>299 ± 12.0</td>
<td>273 ± 32.4</td>
</tr>
<tr>
<td>Blood glucose (mg/dL)b</td>
<td>91.4 ± 8.05</td>
<td>103 ± 8.20</td>
<td>284 ± 32.1</td>
<td>318 ± 69.6</td>
</tr>
<tr>
<td>N-desmethylsildenafil</td>
<td>1.34 ± 0.514</td>
<td>0.207 ± 0.0614</td>
<td>1.02 ± 0.291</td>
<td>0.225 ± 0.173</td>
</tr>
<tr>
<td>T1/2 (min)c</td>
<td>106 ± 31.3</td>
<td>141 ± 44.0</td>
<td>85.2 ± 13.9</td>
<td>104 ± 26.6</td>
</tr>
<tr>
<td>Cmax (µg/mL)d</td>
<td>1.20 ± 0.617</td>
<td>11.2 ± 5.64</td>
<td>2.76 ± 1.85</td>
<td>9.55 ± 7.67</td>
</tr>
<tr>
<td>Tmax (min)e</td>
<td>5 (5–15)</td>
<td>15 (5–45)</td>
<td>15 (15–45)</td>
<td>22.5 (5–45)</td>
</tr>
<tr>
<td>CLint (mL/min/kg)</td>
<td>0.484 ± 0.294</td>
<td>0.317 ± 0.199</td>
<td>0.293 ± 0.120</td>
<td>0.511 ± 0.635</td>
</tr>
<tr>
<td>Ae0–24h (% of sildenafil dose)</td>
<td>0.151 ± 0.105</td>
<td>2.56 ± 2.12</td>
<td>0.242 ± 0.103</td>
<td>2.44 ± 2.33</td>
</tr>
<tr>
<td>GL1/2h (% of sildenafil dose)</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>F (%)</td>
<td>5.61</td>
<td>59.1</td>
<td>11.3</td>
<td>52.7</td>
</tr>
</tbody>
</table>

Notes: Data are the mean ± standard deviation (SD) except for Tmax, which is median (range).

AUC, Area under the plasma concentration–time curve; Ae0–24h, percentage of the dose excreted in the 24-h urine; Cmax, peak plasma concentration; CLint, renal clearance; DM, diabetes mellitus; F, extent of absolute oral bioavailability; GI1/2h, percentage of the dose recovered from the gastrointestinal tract (including its contents and faeces) at 24 h; LC, liver cirrhosis; LCD, liver cirrhosis with diabetes mellitus; Tmax, time to reach Cmax.

a Control group was significantly different (P<0.05) from DM and LCD groups.

b Control group was significantly different (P<0.05) from DM and LCD groups.

c Control group was significantly different (P<0.05) from LC and LCD groups.

f LC group was significantly different (P<0.05) from other three groups.

g Control group was significantly different (P<0.05) from LCD group.

Below the detection limit.

h Control group, DM group, and LC and LCD groups were significantly different (P<0.05).
51.9%, respectively; Table 2). However, this was not likely due to the increase in the free fraction of sildenafil in plasma compared with controls; the free fractions were comparable among three groups of rats. Similar results have also been reported in LC rats that the V of theophylline was slightly larger although the protein binding value was comparable with controls (Nam et al. 1997). The exact reason for this is unclear and more studies are required.

In LC and LCD rats, the AUCs of oral sildenafil were also greater than controls (by 3010% and 2030%, respectively) (Table 3). However, this was not likely due to the increased GI absorption of sildenafil compared with controls. For comparison, the "true" fractions of the oral dose of sildenafil unabsorbed ("F_unabs") were estimated using the reported equation (Lee and Chiou 1983). The "F_unabs" values thus estimated were almost negligible, suggesting almost complete absorption of sildenafil for all groups of rats. As mentioned earlier, the intestinal and hepatic first-pass extraction ratios of sildenafil were 0.71 and 0.137 of the oral dose, respectively, in rats (Shin et al. 2006). Thus, the contribution of intestinal first-pass extraction (0.71 of the oral dose) to the significantly greater AUC of oral sildenafil was greater than that of the hepatic first-pass extraction (0.137 of the oral dose). In LC and LCD rats, the magnitude of the increase in AUCs of oral sildenafil (by 3010% and 2030%, respectively) was considerably greater than 195% and 127% increase, respectively, after the intravenous sildenafil (Table 2). Thus, only inhibition of hepatic metabolism of sildenafil could not fully explain the considerable increase in AUCs of oral sildenafil (Table 3). This could mainly be due to the decrease in the intestinal metabolism of sildenafil because of decrease in the protein expression of intestinal CYP2C11 in LC and LCD rats (Figure 2). This could be supported by the greater magnitude in the smaller metabolite ratios in LC and LCD rats after the oral administration (by 97.1% and 97.2%, respectively) (Table 3) than that after the intravenous administration (by 78.1% and 77.1%, respectively) (Table 2). Therefore, in LC and LCD rats, the significantly greater AUCs of oral sildenafil were mainly due to the decrease in intestinal metabolism of sildenafil in addition to decrease in hepatic metabolism compared with controls. The above results could explain the greater F values in LC and LCD rats than controls (Table 3).

In conclusion, in LC, DM, and LCD rats, the CLs (AUCs) of intravenous sildenafil were significantly slower (greater) and the metabolite ratios were significantly smaller than controls. This could have mainly been due to the slower hepatic metabolism of sildenafil than controls. In LC and LCD rats, the magnitudes of increase in the AUCs of oral sildenafil and decrease in metabolite ratios were greater than those after the intravenous administration. This could have mainly been due to the decrease in intestinal extraction of sildenafil because of decrease in the protein expression of intestinal CYP2C11 in LC and LCD rats. The changes in hepatic CYP2C and 3A subfamilies in patients with DM alone and with LC did not seem to be reported. Moreover, the pharmacokinetic studies on sildenafil in patients with diabetes with and without LC also did not seem to be reported. In patients with LC, the changes in AUC of N-desmethylysildenafil (Murihead et al. 2002) were different from those in the present LC rats. Thus, the present experimental data in rats should be extrapolated with care to the human situation.

Acknowledgement

This study was supported in part by a grant of the 2009 BK21 Project for Applied Pharmaceutical Life Sciences and by the Korean Health 21 R&D project, Ministry of Health & Welfare, Korea (A050376).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

